摘要
本文首先对方程(1.1)建立了Lyapunov函数,然后在P=0的情况下,证明了平庸解x=0在大范围内的渐近稳定性,和在p≠0的情况下,研究了(1.1)式的解的有界性问题.这些结论对一些众所周知的成果有所改进.
In this paper, we first Present construct lug a Lyapunov;function for (1. 1) andthen we show the asymptotic stability in the large of the trivial solution x=0for case p o, and the boundedness result of the solutions of (1. 1) for case p ̄0.These results improve seveal well-known results.
出处
《应用数学和力学》
CSCD
北大核心
1996年第11期979-988,共10页
Applied Mathematics and Mechanics
关键词
微分方程
稳定性
有界性
内禀性
解
nonlinear diffetential equations of the fourth order, Lyapunov function, stability, boundedness, intrinsic method