摘要
讨论了在映射T:Rn→Rm下,点集T(A)Rm与T-1(B)Rn的可测性,研究了映射T的保零测性与保可测性的条件.作为推论证明了:当ERn可测且ARn最多可数时,E+A与E#A都可测,其中E+A=x+a|x∈E,a∈A{},E#A=x#a|x∈E,a∈A{}(x#a=(x1a1,x2a2,…,xnan)).特别地。
For a mapping T: R n→ R m , the measurability of T(A) and T -1 (B) are discussed, and some conditions, under which the measurability or null measurability of a set is preserved by T , are given. It is proved that if E R n is measurable and A R n is finite or countable, then E+A and E#A are all measurable,where E+A={x+a|x∈E and a∈A } and E#A={(x 1a 1,x 2a 2,…,x na n)|x∈E and a∈A} . Especially, the translation invariance of Lebesgue measure is shown.
出处
《陕西师范大学学报(自然科学版)》
CAS
CSCD
1996年第4期1-5,共5页
Journal of Shaanxi Normal University:Natural Science Edition
基金
国家自然科学基金