摘要
在自反Banach空问的框架下建立了极大单调且3*—单调算子的一个值域定理,用此定理并注意到Nemyckil算子的3*—单调性,在空间Lp(G)(1<P<∞,GRn有界开)中证明了不具强制性条件的Hammerstein积分方程解的存在性。
An abstract range theorem for maximal monotone and 3* -monotone operatorsis proved in the real reflexive Banach spare,using this theorem and the 3*-monotonicity of Nemyckii operator .the existence of soldtion of Hammerstoin integral equation without corecive condition isproved in Lp(G) with 1 <p<∞,and GR. is open bounded.
出处
《重庆大学学报(自然科学版)》
CAS
CSCD
1996年第6期120-124,共5页
Journal of Chongqing University
关键词
极大单调
3*-单调
积分方程
s: maximal monotonicity
3-monotonicity
Hamerstein integral equation