期刊文献+

面向对象解译方法在遥感影像地物分类中的应用 被引量:33

Application of Object-Oriented Interpretation to Information Classification on Remote Sensing Image
下载PDF
导出
摘要 针对高分辨率遥感影像快速高效萃取有用信息这一遥感技术应用的热点问题,探讨了基于面向对象(Ob-ject-oriented)解译方法的遥感影像自动及半自动解译和提取的新思路。文中分析了面向对象解译方法在地物信息分类应用中的优势,并提出了基于此方法的高分辨率遥感影像多尺度信息提取技术流程。具体结合广州市新白云机场开发区IKONOS高分辨率遥感数据进行地物快速提取、自动分类的试验,并对解译效果进行了评估分析,证明此方法在高分辨率遥感影像地物分类中确实高效可行。 How to extract the valuable information from high-resolution remote sensing image is a hotspot of application of remote sensing technology. The object-oriented approach presents a powerful automatic and semiautomatic interpretation for remote sensing image. In this paper the advantages of the approach applied to image information extraction and classification are analyzed, and the flowchart of high-resolution remote sensing image information ex- traction is designed. By using this method, as an example, the information from IKONOS image data for the Development Zone of the Baiyun Ai of the classification results is tion remote sensing data class rport in Guangzhou is quickly extracted and classified automatically, and the precision evaluated. The approach has been proved to be feasible and efficient in high-resoluification.
出处 《热带地理》 2006年第3期234-238,242,共6页 Tropical Geography
基金 广东省科技攻关项目[2005B30801005] 华南农大校长基金[2005K139]
关键词 面向对象 影像解译 分类 E-cognition Object-oriented Image interpretation Classification E-cognition
  • 相关文献

参考文献16

  • 1Curlander J, Kober W. Rule based system for thematic classification in SAR imagery [M]//International Geoscience and Remote Sensing Symposium. IGARSS 1992. New York: IGARSS. IEEE Press,1992, 854 - 856.
  • 2Haverkamp D, Tsatsoulis C. The use of expert systems in combination with active and passive microwave data to classify sea-ice [EB/OL]. [2005-09-06]. http://ieeexplore.ieee.org/ie12/1014/12511/00578652. pdf? arnumber = 578652.
  • 3Serpico S. Rol F. Classification of muhisensor remote sensing images by structured neural networks [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33 (3) : 562 -577.
  • 4..高分辨率卫星遥感影像应用解决方案[EB/OL]..国遥万维http://www.ncg. ac.cn/list.asp? unid =27,,[2005-01-07]..
  • 5Blaschke T, Strobl J. What' s wrong with pixels? Some recent developments interfacing remote sensing and GIS [ J ]. GeoBIT/GIS:2001, 6:34-39.
  • 6Ecognition. Object oriented image classification [ EB/OL ]. [2004-05-06]. http://www.definiens-imaging.com/documents/reference2000. htm.
  • 7Mauro C, Eufemia T. Accuracy Assessment of Per-Field Classification Integrating Very Fine Spatial Resolution Satellite Imagery with Topographic Data [ J]. Journal of Geospatial Engineering, 2001, 3(2) :127 - 134.
  • 8Aplin P, Atkinson P, Curran P. Per-field Classification of Land Use Using the Forthcoming Very Fine Resol ution Satellite Sensors : Problems and Potential Solutions [EB/OL]. [2004-06-18]. http://www.definiens.com/pdf/publications/IGARSSming.pdf.
  • 9Huang Huiping, Wu Bingfang, Fan Jinlong. Analysis to the Relationship of Classification Accuracy Segmentation Scale Image Resolution [EB/OL]. [ 2005-03-05 ]. http://www.definiens.com/pdf/publicationsI_DO8_07. PDF.
  • 10Hellwich O, Wiedemann C. Object Extraction from High-Resolution Muhisensor Image Data [ M ]//Sophia Antipolis. 3rd International Conference on Fusion of Earth Data. France: SEE GreCA .2000:105-115.

二级参考文献17

  • 1[1]David Altman. Fuzzy Set Theoretic Approaches for Handing Imprecision in Spatial Analysis [J]. International Journal of Geographical Information Science, 1994, 8(3):271-289.
  • 2[3]Max J. Egenhofer. A Model for Detailed Binary Topological Relationship [J]. Geomatica, 1993,47(3-4):261-273.
  • 3[4]Chen J, Li C M, Li Zhilin et al. A Voronoi-based 9-Intersection Model for Spatial Relations [J]. International Journal of Geographical Information Science, 2001, 15(3):201-220.
  • 4Volker Walter. Object based Classification of Remote Sensing Data for Change Detection [J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2004,58:225~238.
  • 5黄慧萍.[D].中国科学院遥感应用研究所,15~19.
  • 6Barlow J, Martin Y, Franklin S E. Detecting Translational Landslide Scars Using Segmentation of Landsat ETM+ and DEM Data in the Northern Cascade Mountains [J]. British Columbia,Can J Remote Sensing. 2003,29(4) : 510~517.
  • 7Geneletti D, Gorte B G H. A Method for Object-Oriented Land Cover Classification Combining Landsat TM Data and Aerial Photographs[ J]. Remote Sensing. 2003,24(6) :1273~1286.
  • 8Benz*C, Hofmann P, Willhauck G, et al. Multiresolution, Object- oriented Fuzzy Analysis of Remote Sensing Data for GIS- ready Information [J]. ISPRS Journal of Photogrammetry & Remote Sensing . 2004,58:239~258.
  • 9Baatz M, Schape A. Multi-resolution Segmentation: An Optimization Approach for High Quality Multiscale Image Seg-mentation. Angewandte Geogr [ R ]. Information Sverarbeitung, ed. by Strobl J, Blaschke T, Wichmann,Heidel-berg. 2000, Ⅵ: 12~23.
  • 10Hay G J, Niemann K O. Visualizing 3-D Texture: A Three-Dimensional Structural Approach to Model Forest Texture [J]. Candian Journal of Remote Sensing. 1994, 20(2): 90~101.

共引文献209

同被引文献332

引证文献33

二级引证文献309

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部