摘要
对广义特征值问题Ax=λBx,A,B∈Cn×n(1),本文提出l级HGRQI格式,其中l为任一自然数,它的局部收敛阶为l+1。当l=1时,它就是文[1]中所述的GRQI格式,如果用Gauss消元法解有关线性方程组,则当1<l<<n时,l级HGRQI在每个迭代步中的运算量与GRQI的运算量基本持平。本文又将适用于普通特征值问题Ax=λx的Ostrowski双边送代法(OTI)推广到l级HGOTI,它适用于问题(1),且具有局部收敛率l十1。当l=1且(1)中的B=I时,HGOTI便成了OTI。HGOTI与HGRQI有类似的优点。
In the paper, for generalized eigenvalue problem Ax=λBx, A,B∈C ̄n×n (1). the l-thgrad HGRQI and HGOTI schemes are proposed respectively, where l is a given natural number. Under some conditions, they both have local convergence rate l+1. The well-known GRQI[1] is just the l-st grad HGRQI. If the Gauss elimination method is used to solve relevant linearsystems, then when 1 < l<<n, in each iteration step, the flop's order required by the l-th gradHGRQI is about the same as one required by the GRQI. The case is similar to above betweenthe l-st grad HGOTI and the l-th grad HGOTI.
出处
《华东师范大学学报(自然科学版)》
CAS
CSCD
1996年第4期1-9,共9页
Journal of East China Normal University(Natural Science)
关键词
高收敛率
矩阵
特征值
迭代法
GRQI
General Rayleigh quotient iteration (GRQI) HGRQIHGOTI convergence rate