期刊文献+

高收敛率的GRQI型迭代法

Some GRQI-Type Schemes with High Convergence Rate
下载PDF
导出
摘要 对广义特征值问题Ax=λBx,A,B∈Cn×n(1),本文提出l级HGRQI格式,其中l为任一自然数,它的局部收敛阶为l+1。当l=1时,它就是文[1]中所述的GRQI格式,如果用Gauss消元法解有关线性方程组,则当1<l<<n时,l级HGRQI在每个迭代步中的运算量与GRQI的运算量基本持平。本文又将适用于普通特征值问题Ax=λx的Ostrowski双边送代法(OTI)推广到l级HGOTI,它适用于问题(1),且具有局部收敛率l十1。当l=1且(1)中的B=I时,HGOTI便成了OTI。HGOTI与HGRQI有类似的优点。 In the paper, for generalized eigenvalue problem Ax=λBx, A,B∈C ̄n×n (1). the l-thgrad HGRQI and HGOTI schemes are proposed respectively, where l is a given natural number. Under some conditions, they both have local convergence rate l+1. The well-known GRQI[1] is just the l-st grad HGRQI. If the Gauss elimination method is used to solve relevant linearsystems, then when 1 < l<<n, in each iteration step, the flop's order required by the l-th gradHGRQI is about the same as one required by the GRQI. The case is similar to above betweenthe l-st grad HGOTI and the l-th grad HGOTI.
作者 刘清 征道生
出处 《华东师范大学学报(自然科学版)》 CAS CSCD 1996年第4期1-9,共9页 Journal of East China Normal University(Natural Science)
关键词 高收敛率 矩阵 特征值 迭代法 GRQI General Rayleigh quotient iteration (GRQI) HGRQIHGOTI convergence rate
  • 相关文献

参考文献1

  • 1征道生,华东师范大学学报,1996年,2期,16页

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部