期刊文献+

迭代学习控制系统的鲁棒性分析 被引量:6

Robustness Analysis for Iterative Learning Control Systems
下载PDF
导出
摘要 讨论了在初态偏离、状态输出扰动和非线性扰动同时存在的干扰环境中运行的迭代学习控制系统的鲁棒性问题.通过更精确的误差渐近界估计,结合迭代学习控制算法中的开环和闭环方案,给出了算法的鲁棒性条件,以及算法收敛性所要求的渐近干扰条件. Combining the open-loop algorithm and closed-loop algorithm,the robustness of the improved iterative learning control schemes with respect to initial state bias,disturbances of state and output, and nonlinear fluctuation is studied extensively. Via more precise estimation for asymptotic bounds of iterative errors, the sufficient conditions for convergence are provided. It exhibits that motion trajectories converge to the desired one in the existence of asymptotic invariant disturbances under P-type learning law, and the convergence of D-type learning law can not be guaranteed in the presence of these kinds of disturbances. In addition, the uniform boundedness of motion trajectories is also proved.
作者 孙明轩
机构地区 西安工业学院
出处 《科技通报》 1996年第4期198-203,共6页 Bulletin of Science and Technology
基金 国家自然科学基金
关键词 迭代学习控制 收敛性 鲁棒性 学习控制系统 iterative learning control, tracking systems, convergence, robustness
  • 相关文献

同被引文献42

引证文献6

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部