摘要
环R称为左(右)SF)环,如果所有单左(右)R-模是平坦的;环R称为I-环,如果R的每个非零左理想含有非零幂等元,在本文中,我们证明了如下主要结果:(-)对于环R,如下条件是等价的:(1)R是Artin半单环;(2)R是左SF-环且R/Z(RR)是Artin半单环;(3)R是左非奇异的,左SF-环且RR具有有限秩;(4)R是正交有限的I-环。(二)R是基层不为零的正则左自内射环当且仅当R是包含非奇异内射极大左理想的左P-内射环。
A ring R is called a left(right)SF-ring if every simple left(right)R-module is flat.A ring R is called an I-ring if every nonzero felt ideal of R contains a nonzero idempotent.In this paper, we prove the following results:(1)For a ring R, the following conditions are equivalent:(i)R is an Artinian semisimple ring;(ii) R is a left SF-ring and R/Z(RR) is an Artinian semisimple ring;(iii) R is a left nonsingular, left SF-ring and RR has finite rank;(iv) R is an orthogonally finite I-ring.(2) R is a left selfinjective regular ring with nonzero socle if and only if R is a left p-injective ring containing a nonsingular injective maximal left ideal.
关键词
强正则环
半单环
正则环
结合环
SF环
strongly regular ring SF-ring I-ring P-injective ring selfinjective ring semisimple ring