摘要
定义两个Schrodinger算子L1、L2,先详细研究球面Sn+p中的极小子流形和全脐子流形,然后由算子L1和L2的第一特征值的估计给出Cliford环。
Two Schrdinger operators are first defined. We carefully study the submanifolds in spheres, then a new characterization of Clifford tori in S n+1 and Veronese surface in S 4 is given by the first eigenvalue of the Schrdinger operator L 1=-Δ+ap+(1-p)pS . When the mean curvature vector of submanifold M is parallel but M is not geodesic in S n+p , we also characterise small n spheres of n+p dimensional Euclid spheres by the first eigenvalue of the Schrdinger operator L 2=-Δ-(1-4n)σ .
出处
《湖北大学学报(自然科学版)》
CAS
1996年第3期245-250,共6页
Journal of Hubei University:Natural Science
基金
国家自然科学基金