期刊文献+

Chaotic Motion in a Harmonically Excited Soliton System

Chaotic Motion in a Harmonically Excited Soliton System
下载PDF
导出
摘要 The influence of a soliton system under an external harmonic excitation is considered. We take the compound KdV-Burgers equation as an example, and investigate numerically the chaotic behavior of the system with a periodic forcing. Different routes to chaos such as period doubling, quasi-periodic routes, and the shapes of strange attractors are observed by using bifurcation diagrams, the largest Lyapunov exponents, phase projections and Poincaré maps.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第1X期1-4,共4页 理论物理通讯(英文版)
基金 *The project supported by the Natural Science Foundation of Zhejiang Province of China under Grant No. 101003 and the Foundation of "151 Talent Engineering" of Zhejiang Province of China. 0ne of the authors (Yu) would like to thank Dr. Ze-Yuan Huang, Profs. Sen-Yue Lou and Min Qian for their helpful discussions.
关键词 soliton system compound KdV-Burgers equation CHAOS 孤波系统 混合KdV-Burgers方程 混沌学 外谐波激励
  • 相关文献

参考文献22

  • 1C.S. Gardner, J.M. Greene, M.D. Kruskal, and R.M. Miura, Phys. Rev. Lett. 19 (1967) 1095.
  • 2S.Y. Lou, Phys. Rev. Lett. 80 (1998) 5027.
  • 3J. Yu, Phys. Lett. A 259 (1999) 366.
  • 4J. Yu and S.Y. Lou, Science in China (Series A) 43 (2000)655.
  • 5J. Yu, Commun. Theor. Phys. (Beijing, China) 34 (2000)189.
  • 6Y.Q. Ke and J. Yu, Commun. Theor. Phys. (Beijing,China) 43 (2005) 597.
  • 7J. Yu, Q.P. Sun, and W.J. Zhang, Physica Scripta 71(2005) 129.
  • 8F.Kh. Abdullaev, Phys. Rep. 179 (1989) 1.
  • 9K.B. Blyuss, Rep. Math. Phys. 46 (2000) 47.
  • 10R. Grimshaw and X. Tian, Proc. Roy. Soc. London A 455(1994) 1.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部