期刊文献+

基于EMD与功率谱分析的滚动轴承故障诊断方法研究 被引量:21

RESEARCH OF FAULT DIAGNOSIS OF ROLLING BEARINGS BASED ON EMD AND POWER SPECTRUM ANALYSIS METHOD
下载PDF
导出
摘要 针对西部油田大型设备故障信号的非线性、非平稳特征,提出一种基于经验模态分解方法EMD(empiricalmode decomposition)和功率谱的分析方法。首先对滚动轴承振动信号进行经验模态分解,然后对分解后包含轴承故障特征信息的固有模态函数分量作功率谱分析,得到各分量的功率谱图,清晰直观显示出故障特征信号的功率谱,从混有背景信号和噪声的振动信号中提取轴承故障信息。由于EMD方法具有自适应特性,适宜于非线性、非平稳信号的分解,该方法应用于滚动轴承的故障振动信号分析中,结果表明,该方法能够突出滚动轴承振动信号的故障特征,从而提高滚动轴承故障诊断的准确性。 According to the non-stationary and non-linear characteristic of wiling bearing vibration signal, an analysis method based on empirical mode decomposition and power spectrum is put forward. Firstly, the original vibration signals are decomposed into a finite number of stationary intrinsic mode functions (IMFs) by EMD(empirical mode decomposition). Then the IMFs relating to fault information are applied to power spectrum analysis. The result of the method is the power spectrum of relating IMFs, which can illustrate the characteristic of the signal clearly and extract the fault characteristic information easily. Since the EMD method is self-adaptive, it is applicable to non-linear and non-stationary signals. Applied example proves the effectiveness of the method.
出处 《机械强度》 EI CAS CSCD 北大核心 2006年第4期628-631,共4页 Journal of Mechanical Strength
基金 国家自然科学基金(50105015 50375103) 教育部新世纪优秀人才支持计划 教育部霍英东青年教师教育基金(91051) 北京市科技新星计划(2003B33)资助项目~~
关键词 故障诊断 滚动轴承 经验模态分解方法(EMD) 功率谱 Fault diagnosis Rolling bearing Empirical mode decompostion (EMD) Power spectrum
  • 相关文献

参考文献4

二级参考文献17

  • 1张文明,李莉,申焱华,王英,王卫刚.滚动轴承故障诊断中的分形[J].北京科技大学学报,1996,18(3):215-219. 被引量:18
  • 2Vasudevan K, Cook F A. Empirical mode skeletonization of deep crustal seismic data: theory and applications. Journal of Geophysical Research-Solid Earth,2000, (105):7845~7856
  • 3Echeverria J C, Crowe J A, Woolfson M S, et al. Application of empirical mode decomposition to heart rate variability analysis. Medical & Biological Engineering &Computing, 2001, (39) :471~479
  • 4Norden E, Huang Z S, Steven R L, et al. The empirical mode decomposition and the non-stationary time series analysis. In: Proc. R. Soc. Lond, 1998. 903~995
  • 5Better algorithms for analyzing nonlinear, nonstationary data. http:∥tco. gsfc. nasa. gov
  • 6Loh C H, Wu T C, Huang N E. Application of the empirical mode decomposition-Hilbert spectrum method to identify near-fault ground-motion characteristics and structural responses. Bulletin of the Seismological Society of America, 2001, (91) :1339~1357
  • 7LI Chang-pin. On super-chaotifying discrete dynamical systems[J]. Chaos, Solitons and Fractals, 2004,21 : 855- 861.
  • 8刘勇,非数值并行算法.2 遗传算法,1995年
  • 9Norden E,Huang, Shen Zhen, et al. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and nonStationary Tume Series Analysis [J]. Proc. Royal Society Lond,1998,454A: 903 - 995
  • 10杨绍清,章新华,赵长安.一种最大李雅普诺夫指数估计的稳健算法[J].物理学报,2000,49(4):636-640. 被引量:59

共引文献105

同被引文献161

引证文献21

二级引证文献168

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部