摘要
推广了常见的分步傅里叶数值算法(split step FFT,SSFFT),并用它成功地求解了离散非线性薛定谔方程(discrete nonlinear Schr dinger equation,DNLSE).将此方法与常见的求解DNLSE的Runge-Kutta法做了比较,计算结果表明,推广的SSFFT方法具有良好的精度和计算效率.
The canonical split step FFT (SSFFT) was generalized to solve the discrete nonlinear Schrodinger equation (DNLSE). Compared with the Runge-Kutta algorithm, the generalized SSFFT has good accuracy and computational efficiency.
基金
国家自然科学基金(10274078)资助