期刊文献+

基于相对密度的聚类算法 被引量:1

Relative Density Based Clustering Algorithm
下载PDF
导出
摘要 基于密度的聚类算法因其抗噪声能力强和能发现任意形状的簇等优点,在聚类分析中被广泛采用。提出的基于相对密度的聚类算法,在继承上述优点的基础上,有效地解决了基于密度的聚类结果对参数值过于敏感、参数值难以设置以及高密度簇完全被相连的低密度簇所包含等问题。 With strong ability of discovery of arbitrary shape clusters and handling noise, density based clustering is one of primary methods for data mining. A clustering algorithm based on relative density is provided, which efficiently resolves these problems of being very sensitive to the useR- defined parameters and too difficult for users to determine the parameters.
出处 《科学技术与工程》 2006年第15期2272-2276,共5页 Science Technology and Engineering
基金 国家自然科学基金(60172012)资助
关键词 聚类K近邻 聚类参数 相对密度 clustering k-nearest neighbors clustering parameter relative density
  • 相关文献

参考文献4

  • 1[1]Ester M,Kriegel H P,Sander J,et al.A density-based algorithmfor discovering clusters in large spatial databases with noise.In:Proc
  • 2[3]Ankerst M,Breunig M,Kriegel H P,et al.Optics:ordering points to identify the clustering structure.In:Proc ACM SIGMOD 99,Int Conf on Management of Data,Philadelphia,PA,1999
  • 3[4]Breunig M,Kriegel H P,et al.LOF:identifying density-based local outliers.In:Proc ACM SIGMOD 2000 Int Conf on Management of Data,Dalles,TX,2000
  • 4[5]Jian Tang,Chen Zhixiang,Ada Wai-chee Fu,et al.A robust outlier detection scheme for large data sets.In:http://www.cs.panam.edu/ ~ chen/parers.html.

同被引文献4

  • 1Ankerst M, Breunig M, Kriegd H P, et al. Optics: ordering points to identify the clustering structure[ C]//Proc. ACM SIGMOD'99, Int. Conf. on Management of Data. Philadelphia, 1999.
  • 2Breunig M, Kriegel H P, Ng RT, et al. LOF: identifying density- based local outliers[ C]//Proc. ACM SIGMOD 2000 Int. Conf. On Management of Data. Dalles, TX, 2000.
  • 3HanJiawei MichelineKambe.数据挖掘概念与技术[M].北京:机械工业出版社,2001..
  • 4周水庚,周傲英,曹晶,胡运发.一种基于密度的快速聚类算法[J].计算机研究与发展,2000,37(11):1287-1292. 被引量:89

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部