期刊文献+

粒子群算法在模糊神经网络系统辨识中的应用 被引量:3

The Application of Particle Swarm Optimization for the Identificati on of Fuzzy Nerve Network
下载PDF
导出
摘要 由于模糊算法过于依赖专家知识,参数决定过程中人为主观因素过大且无法进行自学习;而神经网络算法收敛速度较慢,还可能陷入局部最小.本文针对上述这两种算法在实际应用中的缺陷,引入并介绍了一种高效的粒子群算法,在采用Sugeno模糊推理计算模型建立模糊神经网络的基础上,利用粒子群算法收敛快、算法简单和全局寻优的优势,实现模糊神经网络的优化辨识,并进行了仿真实验. Fuzzy algorithm excessively depends on the experience from experts and subjective factors and has not self - learning ability; nerve network has the problem of slow convergence and may be got in part minimum. The paper introduces particle swarm optimizer, which is global optimization, quick convergence and simple program, to solve the above - mentioned problems and achieve the identification of fuzzy nerve network based on Sugeno fuzzy control rule with particle swarm optimization. The paper has carried on the simulation experiment.
出处 《南昌大学学报(工科版)》 CAS 2006年第3期253-255,共3页 Journal of Nanchang University(Engineering & Technology)
关键词 粒子群优化 模糊神经网络 系统辨识 particle swarm optimization fuzzy neural network identification
  • 相关文献

参考文献4

  • 1Kennedy J,Eberhart R.Particle Swarm Optimization[C]//Proc IEEE International Conference on Neural Networks.Perth:1995:1 942-1 948.
  • 2杨振强,程树康,朴营国.二级倒立摆的递阶模糊神经网络控制[J].电机与控制学报,2002,6(3):245-248. 被引量:10
  • 3Sugeno M,Kang G T.Structure Identification of Fuzzy Model[J].Fuzzy Sets and Syst,1998,28(1):15-33.
  • 4杨振强.模糊神经网络控制器的设计和应用[M].哈尔滨:哈尔滨工业大学出版社,1999.

二级参考文献3

  • 1FURUTA K, HIROYUKI K, KOSUGE K. Digital control of a double inverted pendulum on an inclined rail [J]. International J of Control, 1980, 32: 907-924.
  • 2KIROAKI H, OTAKE A, NAKANISHI S. Functional completeness of hierarchical fuzzy modeling[J]. Information Sciences, 1998, 110(1): 51-60.
  • 3杨振强,王常虹,庄显义.自适应复制、交叉和突变的遗传算法[J].电子科学学刊,2000,22(1):112-117. 被引量:16

共引文献9

同被引文献19

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部