期刊文献+

p-Laplacian方程无穷多解的存在性 被引量:1

Existence of Infinitely Many Solutions to p-Laplacian Equation
下载PDF
导出
摘要 考虑了一类p-Laplacian方程的D irichlet问题的解.在比(AR)条件更弱的条件下,先证明方程相应的泛函满足(PS)c条件,再应用山路引理得到了该问题无穷多解的存在性. This paper considers the solutions to the Dirichlet problem in a class of p-Laplacian equation. In the condition weaker than the (AR) condition, the corresponding functional of the equation is first proved satisfying the (PS) c condition. Then, by applying the Mountain Pass Theorem, the existence of infinitely many solutions of the problem is confirmed.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第7期120-123,共4页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(10171032)
关键词 P-LAPLACIAN方程 临界点 (PS)c条件 山路引理 p-Laplacian equation critical point (PS)c condition Mountain Pass Theorem
  • 相关文献

参考文献9

  • 1刘轼波,李树杰.一类超线性椭圆方程的无穷多解[J].数学学报(中文版),2003,46(4):625-630. 被引量:22
  • 2Chen Zhihui Shen YaotianDept.of Appl.Math.,South China Univ. of Tech.,Guangzhou 510640,China..INFINITELY MANY SOLUTIONS OF DIRICHLET PROBLEM FOR p-MEAN CURVATURE OPERATOR[J].Applied Mathematics(A Journal of Chinese Universities),2003,18(2):161-172. 被引量:3
  • 3沈尧天,李周欣.含临界指数的p-Laplacian方程的特征值问题[J].华南理工大学学报(自然科学版),2005,33(11):111-114. 被引量:3
  • 4Cerami G.Un criteria de esistenza per I punti critici su varieta illimitate[J].Rc Ist Lomb Sci Lett,1978,12:332-336.
  • 5沈尧天.W0^1,p0(Ω)中二阶拟线性椭圆型Euler方程的非平凡解[J].中国科学:A辑,1984,14(3):217-225.
  • 6Shen Yao-tian.The nontrivial solution of quasilinear elliptic equation in W1,p0 (Ω)[J].Scientia Sinica:Series A,1984,27(7):720-730.
  • 7Shen Yao-tian,Guo Xin-kang.On the existence of infinitely many critical point of the even functional ∫ΩF(x,u,Du)ds in W1,p0(Ω)[J].Acta Math Sci,1987,7(2):187-195.
  • 8Bartsch T.Infinitely many solutions of a symmetric Dirichlet problem[J].Nonl Anal TMA,1993,20:1205-1216.
  • 9Willem M.Minmax theorems[M].Boston:Birkhauser,1996.

二级参考文献28

  • 1Ambrosetti A., Rabinowitz P. H., Dual variational methods in critical point theory and applications, J. Funct.Anal.. 1973. 14: 349-381.
  • 2Zou W. M., Variant fountain theorems and their applications, Mannsc. Math.. 2001. 104: 343-358.
  • 3Li G. B., Zhou H. S., Asymptotically linear Dirichlet problem for the p-Laplacian, Nonl. Anal. TMA, 2001,45: 1043-1055.
  • 4Stuart C. A., Zhou H. S., A variational problem related to self-trapping of an electromagnetic field, Math.Methods in the Applied Sciences. 1996. 19: 1397-1407.
  • 5Jeanjean L., On the existence of bounded Palais-Smale sequences and application to a Landesman-Luer type problem set on RN, Proc. Roy. Soc. Edinburgh, 1999, 129A: 787-809.
  • 6Zhao J. F., Structure theory for Banach space, Wuhan: Wuhan Univ. Press. 1991 (in Chinese).
  • 7Bartsch T., Infinitely many solutions of a symmetric Dirichlet problem, Nonl. Anal. TMA,1993, 20: 1205-1216.
  • 8Willem M., Minmax theorems, Boston: Birkhaeuser. 1996.
  • 9Bartolo P., Benci V., Fortunato D., Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity, Nonl. Anal. TMA. 1983. 7: 981-1012.
  • 10Yaag H., Fan X. L., Existence of infinitely many solutions of the p-Laplace equation with p-concave and convex nonlinearities, J. Lanzhou Univ. Nat. Sci., 1992, 35(2): 12-16 (in Chinese).

共引文献24

同被引文献4

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部