期刊文献+

具有领域独立性的通用模式识别方法的研究 被引量:1

Research on Domain-independent Universal Pattern Recognition
下载PDF
导出
摘要 统计方法是当前广泛采用的模式识别方法,但是这种方法的专业性较强,缺乏通用性。针对这种现状文章提出了基于结构模式识别理论的一种通用模式识别方法,该方法使用一系列结构检测子来提取信号特征,具有领域独立性。设计了对比实验,通过同传统的统计模式识别方法的比较验证了通用模式识别方法的有效性,通过两个不同领域的模式识别问题验证了该方法的领域独立性和有效性。 Statistical method is widely used in pattern recognition. But it has strong specialty and is lacking for curreny. I propose the method of universal pattern recognition based on the structural pattern recognition theory. It employs a series of structure detectors to extract the signal features. It is independent in domain. The universal pattern recognition was compared with traditional statistical method by simulating experiment. It demonstrates this method is efficiency and verifies its domain-independent by processing the pattern recognition problem in two different fields.
机构地区 西安交通大学
出处 《微电子学与计算机》 CSCD 北大核心 2006年第8期35-37,共3页 Microelectronics & Computer
基金 国家自然科学基金项目(50276047)
关键词 故障诊断 特征提取 结构检测子 模式识别 Fault diagnosis, Feature extraction, Structure detector, Pattern recognition
  • 相关文献

参考文献5

  • 1(美)冈察雷斯 R C,汤姆逊 M G,濮群等译.句法模式识别[M].北京:中国社会科学出版社,1979:7~11
  • 2何正嘉.我国小波技术的应用现状和进展[J].振动工程学报,2000,13(2):16-22.
  • 3彭静玉,赵鹤鸣.基于小波变换的语音伪装算法[J].微电子学与计算机,2004,21(9):11-14. 被引量:4
  • 4Robert T.Olszewski.Generalized feature extraction for structural pattern recognition in time-series date[D].Pittsburgh:Carnegie Mellon University,2001:1~23.
  • 5华强,郑启伦.二进前向多层神经网络实现的研究[J].微电子学与计算机,2003,20(4):17-19. 被引量:2

二级参考文献15

  • 1魏允,王守觉,王丽艳,鲁华祥.一种通用神经网络处理机设计及其VLSI集成化讨论[J].电子学报,1995,23(5):7-11. 被引量:3
  • 2R Couhrip. A CMOS Binary Pattem Classifier Baaed on Parzen's Method. IEEE Trans., 1998,9(1):2-10.
  • 3A P Almeida, J E Franca. Digitally programmable analog building blocks for the implementation of attifirial neural networks. IEEE. Trans., 1996,7(2):506-514.
  • 4Chung-Yu Wu, Jeng-Feng Lan. CMOS current-mode neural associative memory design with on-chip learning. IEEE Trans., 1996, 7(1):167-181.
  • 5J H Kim, Sung-Kwon Park. The geometrical learning of binary neural networks. IEEE Trans., 1995,6(1):237-247.
  • 6V Basia and I Pitas. Robust Audio Watermarking in the Timedomain. Processing of EUSIPCO'98, Rhodes, Greece.1998,1: 25~28.
  • 7Laurence Boney, Ahmed H Tewfik and Khaled N Hamdy.Digital Watermarks for Audio Signals. IEEE Int. Conf. on Multimedia Computing and Systems. 1996: 473~480.
  • 8W Bender, D Gruhl and N Morimoto. Techniques for date hiding. IBM Systems Journal, 1996,35(3/4): 313~336.
  • 9D Swanson,B Zhu,et al. Robust Audio Watermarking Using Perceptual Masking. Signal Proc.,1998,66: 337~355.
  • 10M Barni, F Bartolini,V Cappellini, A Piva. A DCT Domain System for Robust Image Watermarking. Signal Processing,1998,66(3): 357~372.

共引文献4

同被引文献5

  • 1高珊,刘万春,朱玉文.基于SVM的车牌字符分割和识别方法[J].微电子学与计算机,2005,22(6):34-36. 被引量:12
  • 2Pratt W K. Digital Image Processing[M]. 2th ed. New York: John Wiley & Sons, 1991.
  • 3Egmont - Petersen M, Ridder D de, Handels H. Image processing using neural networks - a review [ J ]. Pattern Recognition, 2002,35(10) :2279-301.
  • 4Khotanzad A, Hong Y H. Invariant image recognition by zernike moments [ J ]. IEEE Trans, Pattern Analysis and Machine Intelligence, 1990,12(5) :489-497.
  • 5Kimura F, Shridhar M. Handwritten numerical recognition based on multiple algorithms [J ]. Pattern Recognition, 1991,24(10) :969-983.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部