摘要
Γ(β,θ)分布中未知参数θ的最短置信区间实际上是一个条件极值问题,它能转化成一个方程组可用数值方法迭代求解。在假设参数β=1,置信水平为0.95的条件下,比较了常用置信区间与最短置信区间的长度,结果表明:两者长度的绝对差d(n)和相对差e(n)均随样本容量n的增大而减小,当n≤9时,e(n)≥10%。这说明在小样本下,研究参数的最短置信区间是必要的。
The shortest confidence interval of parameter of Gamma distribution is in practice a question of conditional extremum. It can be'transferred to a group of equations that can be solved by a method of numerical value. Assume β=1 , and confidence level is 0.95, the length of normal confidence interval is compared to the length of shortest confidence interval, the results show: both absolute difference d( n) and relative difference e( n) are decreased by the increasing sample number n, when n ≤9, e(n) ≥ 10%. So it is necessary to research the shortest confidence interval of parameter for small samples.
出处
《数理统计与管理》
CSSCI
北大核心
2006年第4期435-437,共3页
Journal of Applied Statistics and Management
关键词
伽玛分布
参数的区间估计
最短置信区间
Gamma distribution
interval estimation of parameter
shortest confidence interval