摘要
本文论述如何运用实际宽带主动声呐的回波信号识别湖底沉积物介质类型。五类湖底沉积层介质分别为:淤泥、岩石、孵石、沙、沙/砾石混合层。比较了等Q和等带宽两种子带能量频域特征提取方法,确认了等Q方法的优点。应用标准前馈BP人工神经网络结构,对五类湖底沉积层介质的平均正确识别率达到82.1%。
The paper presents a method of lake bottom sediment classification using echo signals provided by a wideband active sonar. The five types of sediments are silt. rocks. pebbles. sand. and mixture of sand and gravel. Different sub-band divisions for frequency domain feature extraction are compared and it is shown that the contant Q method provides better results in comparison with the constant bandwidth method. Using a standard feedforward BP network, 82. 1% correct classification in average has been achieved for the five classes of sediments. The advantages of using wideband sonar signals to improve the classification Performance are also shown.
出处
《声学学报》
EI
CSCD
北大核心
1996年第4期517-524,共8页
Acta Acustica
基金
国家自然科学基金