期刊文献+

土壤水分同化系统的敏感性试验研究 被引量:29

Sensitivity analysis on land data assimilation scheme of soil moisture
下载PDF
导出
摘要 利用1998年7月6日至8月9日青藏高原GAME-Tibet试验区MS3608站点的4 cm、20 cm和100 cm的土壤水分观测数据同化SiB2模型输出的表层、根区和深层土壤水分,探讨了一个基于集合卡尔曼滤波和简单生物圈模型的单点土壤水分同化方案。分析和评价了集合大小、同化周期、模型误差、背景场误差以及观测误差对同化系统性能的影响。结果表明:①增加集合数目可以减小土壤水分同化系统的误差,但同时又降低了运行效率;②对于集合卡尔曼滤波,初始场的估计是否准确对同化系统性能影响不大;③模型误差和观测误差的准确估计可以提高土壤水分的估计精度;④利用数据同化的方法对土壤水分的估计有显著提高。 We develop a one-dimensional land data assimilation scheme based on the ensemble Kalman filter (EnKF) and simple biosphere model (SiB2). In order to evaluate the performance of the assimilation system, we do some assimilation experiments, using GAME-Tibet observation data from July 6 to August 9 in 1998, at the MS3608 site on the Tibetan plateau. When the current observations, in situ observations of soil moisture at the depth of 4, 20 and 100 cm are assimilated into land surface model (SiB2), the best estimations of soil moisture at the surface layer, the root zone and the deep layer are calculated. We also analyze the influence of the ensemble size, the assimilation cycle, the model error, the background error and the observation error on the assimilation system. The results indicate: (1) The error in assimilation system can be reduced by increasing the ensemble members, but it will make the operation efficiency lower; (2) As for EnKF, it is unimportant for the and the observation error can decrease the soil moisture error in the surface layer, the root zone and the deep layer; And (4) the estimation of soil moisture can be improved by using the data assimilation method.
作者 黄春林 李新
出处 《水科学进展》 EI CAS CSCD 北大核心 2006年第4期457-465,共9页 Advances in Water Science
基金 国家自然科学基金资助项目(90202014) 国家重点基础研究发展计划(973)资助项目(2001CB309404) 中国科学院寒区旱区环境与工程研究所创新课题资助项目(CACX2003102)~~
关键词 集合卡尔曼滤波 陆面数据同化系统 简单生物圈模型 土壤水分 敏感性分析 ensemble Kalman filter land data assimilation simple biosphere model soil moisture sensitivity analysis
  • 相关文献

参考文献30

  • 1McLaughlin D.Recent development in hydrologic data assimilation[J].Reviews of Geophysics,1995(supplement):977-984.
  • 2McLaughlin D.An integrated approach to hydrologic data assimilation:interpolation,smoothing,and filtering[J].Advances in Water Resources,2002,25:1 275-1 286.
  • 3李新,小池俊雄,程国栋.一个基于模拟退火法的陆面数据同化算法[J].地球科学进展,2003,18(4):632-636. 被引量:27
  • 4Li Xin,Koike T,Pathmathevan M.A very fast simulated re-annealing (VFSA) approach for land data assimilation[J].Computer&Geosciences,2004,30:239-248.
  • 5Li Xin,Koike T.Frozen soil parameterization in SiB2 and its validation with GAME-Tibet observations[J].Cold Region Science and Technology,2003,3(1-3):165-182.
  • 6Pathmathevan M,Koike T,Li X.A New Satellite-Based Data Assimilation Algorithm to Determine Spatial and Temporal Variations of Soil Moisture and Temperature Profiles[J].Journal of the Meteorological Society of Japan,2003,81(5):1 111-1 135.
  • 7Pathmathevan M,Koike T,Li X,et al.A simplified land data assimilation scheme and its application to soil moisture experiments in 2002(SMEX02)[J].Water Resources Research,2003,39(12),1341,doi:10.1029/2003WR002124.
  • 8Houser P R,Shuttleworth W J,Gupta H V.Integration of soil moisture remote sensing and hydrologic modeling using data assimilation[J].Water Resource Research,1998,34(12):3 405-3 420.
  • 9Schuurmans J M,Troch P A.Assimilation of remotely sensed latent heat flux in distributed hydrological model[J].Advances in Water Resources,2003,26:151-159.
  • 10Galantowicz J F,Entekhabi D,Njoku E G.Tests of sequential data assimilation for retrieving profile soil moisture and temperature from observed L-band radiobrightness[J].IEEE Transactions on Geoscience and Remote Sensing,1999,37(4):1 860-1 870.

二级参考文献20

  • 1Hoeben R, Troch P A. Assimilation of active microwave observatioon data for soil moistute profile estimation[ J]. Water Resaurces Research, 2000, 36 (10) : 2 805-2 819.
  • 2Houser P R, Shuttleworth W J, Famiglietti J S,et al. Integration of soil moisture remote sensing and hydrologic modeling using data assimilation[J]. Water Resources Research, 1998, 34 (12):3 405-3 420.
  • 3Walker J P, Willgoose G R, Kalma J D. One-dimensional soil moisture profile retrieval by assimilation of near-surface observa-tions:A comparison of retrieval algorithm[J]. Advances in Water Resources, 2001,24:631-650.
  • 4Kruger J. Simulated annealing---A tool for data assimilation into phy, 1993, 23 (4) : 679-688.
  • 5Bennett A F, Chua B S. Open-ocean modeling as an inverse problem : The primitive equations[ J]. Monthly Weather Review,1994, 122 (6) : 1 326-1 336.
  • 6Evensen G. Advanced data assimilation for strongly nonlinear dynamics[J]. Monthly Weather Review, 1997, 125 (6): 1 342-1 354.
  • 7Ingber L. Veay fast simulated reannealing[ J ]. Mathematicla Computer Modelling, 1989, 12 (8): 967--973.
  • 8Zupanski M, Kalnay E. Principles of data assimilation[ A]. In:Browning K A, Gurney R J, eds. Global Eneagy and Watear Cycles~C]. New York: Cambridse University Press, 1999.
  • 9Li Xin, Koike T. A new frozen soll parameterization in land surface scheme[A]. In: Matsuno T, Kida H, eds. Present and Fulure of Modeling Global Environmental Change: Toward Integrated Modeling[ C]. Tokyo: TERRAPUB, 2001. 405-414.
  • 10Kirkpatrlck S, Gelatt C D Jr, Vecchi M P. Optimization by simulated annealing[J]. Science, 1983, 220 (4 598) : 671-680.

共引文献26

同被引文献371

引证文献29

二级引证文献243

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部