期刊文献+

基于方差波动多重分形特征的金融时间序列聚类 被引量:13

Clustering Financial Time Series Based on Multi-fractal Features of Variance Volatility
下载PDF
导出
摘要 提出了一种新的概率函数计算方法,用于研究金融时间序列在方差波动方面的多重分形特征。在此基础上提出了一种基于多重分形的时间序列聚类算法,该算法能够根据不同的分析目的,灵活地使用不同的概率函数以及序列的多重分形特征参量进行聚类。对上海证券市场实际数据的实验结果表明,本文提出的聚类算法是灵活有效的。 A new probabilistic function for studying the multi-fractal features on the volatility of variance of financial time series is proposed. Then a new time series clustering algorithm based on multi-fractal features is brought forward, which can cluster financial time series flexibly according to different purpose by using different probabilistic functions and multifractal features parameters. The experiments conducted on real data of Shanghai securities market show the algorithm is practical and effective.
出处 《系统工程》 CSCD 北大核心 2006年第6期100-103,共4页 Systems Engineering
基金 上海市科委科技攻关计划项目(045115003)
关键词 多重分形 时间序列 方差波动 聚类 Multi-fractal Features Time Series Variance Volatility Clustering
  • 相关文献

参考文献11

  • 1Mandelbrot B B,et al. Fractals and scaling in finance[M]. Springer, 1997.
  • 2Sun X,etal. Multifractal analysis of Hang Seng Index in Hong Kong stock market[J]. Physica A, 2001,291:553-562
  • 3何建敏,常松.中国股票市场多重分形游走及其预测[J].中国管理科学,2002,10(3):11-17. 被引量:43
  • 4卢方元.中国股市收益率的多重分形分析[J].系统工程理论与实践,2004,24(6):50-54. 被引量:50
  • 5Barbar'a D, Chen P. Using the fractal dimension to cluster datasets[A]. Proc. int'l conf. on knowledge discovery and data mining[C]. 2000:260-264
  • 6Abrahao B, Barbara D,Almeida V,Ribeiro F. Fractal characterization of web workloads[Z]. WWW2002 Conference,Web-Engineering Track, Honolulu, Hawaii, 2002.
  • 7Barry R L,Kinsner W. Multifractal characterization for classification of network traffic[A]. Electrical and computer engineering, 2004. Canadian Conference on,Volume 3[C]. 2004 : 1453-1457.
  • 8Bouchaud J P,Potters M. Theory of financial risks[M]. Cambridge University Press,2000.
  • 9埃德加.E.彼得斯.分形市场分析—将混沌理论应用到投资与经济理论上[M].北京:经济科学出版社,2002.
  • 10Han J W,Kambr M. Data mining:concepts and techniques[M]. Academic Press,2001.

二级参考文献13

  • 1杨福生.小波变换的工程分析与应用[M].北京:科学出版社,2000..
  • 2[1]Barabasi A L, Vicsek T. Multifractality of self-affine fractals[J]. Phys Rev A, 1991, 44:2730-2733.
  • 3[2]Peitgen H O, Jurgens H, Saupe D. Chaos and Fractals[M]. New York: Springer, 1992 (Appendix B).
  • 4[3]Bacry E, Delour J, Muzy J F. Multifractal random walks[J]. Phys Rev E, 2001, 64:026103-026106.
  • 5[4]Ivanov P Ch, Amaral L A N, Goldberger A L, et al. Multifractality in human heartbeat dynamics[J]. Nature,1999,399:461-465.
  • 6[5]Amaral L A N, Ivanov P Ch, Aoyagi N, et al. Behavioral-independent features of complex heartbeat dynamics Phys[J]. Rev Lett, 2001, 86:6026-6029.
  • 7[6]Silchenko A, Hu C K. Multifractal characterization of stochastic resonance[J]. Phys Rev E, 2001, 63:041105-041115.
  • 8[7]Kantelhardt J W, Stephan A Z, Eva K B, et al. Multifractal detrended fluctuation analysis of nonstationary time series[J]. Physica A, 2002, 316: 87-114.
  • 9[8]Schmitt F, Shertze D, lovejoy S. Multifractal fluctuations in finance[J].International Journal of Theoretical and Applied Finance,2000,(3):361-364.
  • 10[9]bouchaud J P, Potters M,Meyer M. Apparent multifractality in financial time series[J].Eur Phys J B, 2000,13:595-599.

共引文献83

同被引文献151

引证文献13

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部