摘要
提出了一种新的概率函数计算方法,用于研究金融时间序列在方差波动方面的多重分形特征。在此基础上提出了一种基于多重分形的时间序列聚类算法,该算法能够根据不同的分析目的,灵活地使用不同的概率函数以及序列的多重分形特征参量进行聚类。对上海证券市场实际数据的实验结果表明,本文提出的聚类算法是灵活有效的。
A new probabilistic function for studying the multi-fractal features on the volatility of variance of financial time series is proposed. Then a new time series clustering algorithm based on multi-fractal features is brought forward, which can cluster financial time series flexibly according to different purpose by using different probabilistic functions and multifractal features parameters. The experiments conducted on real data of Shanghai securities market show the algorithm is practical and effective.
出处
《系统工程》
CSCD
北大核心
2006年第6期100-103,共4页
Systems Engineering
基金
上海市科委科技攻关计划项目(045115003)
关键词
多重分形
时间序列
方差波动
聚类
Multi-fractal Features
Time Series
Variance Volatility
Clustering