期刊文献+

一种拟合曲线的新拟合算法

A New Fitting Algorithm for Fitting Curve
下载PDF
导出
摘要 非线性测量中对测量结果进行曲线拟合通常采用最小均方误差的标准进行系统参数的辨识,该方法未考虑输入样本的随机性。基于此,提出了一种新的拟合算法:考虑输入样本的随机性所采取的一种加权的最小均方误差拟合方法,利用已知的输入样本的统计特性对权值进行估计,对算法概率为1的任意逼近性给出证明,并对区间半长作出估计。实验表明,该算法有较理想的逼近效果。 The measurement data processed by mean square error is usually adopted in identifying curve fitting in nonlinear survey, the criterion of minimal system parameter. But sample randomness isn' t taken account of in this method. Therefore a new curve fitting algorithm is suggested in this paper: a weighted curve fitting method of minimal mean square error is adopted, in which the input sample is random, the weight is evaluated by statistical characteristic of input sample, intended approximation with probability equivalent to 1 is proved, and interval half-length is estimated. Experiment shows that the algorithm could work with better approximation effect.
出处 《电子工程师》 2006年第8期10-12,共3页 Electronic Engineer
关键词 拟合 算法 输入样本 随机性 curve fitting algorithm input sample randomicity
  • 相关文献

参考文献3

二级参考文献4

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部