期刊文献+

小波变换与自适应滤波在脑电信号消噪中的应用 被引量:4

Application of Wavelet Transform and Adaptive Filtering to EEG Signal Denoising
下载PDF
导出
摘要 提出了基于AR(自回归)模型的小波变换与LMS(最小均方)自适应滤波相结合的脑电信号分析方法,并利用它来消除脑电信号中的噪声干扰。实验结果表明,利用小波变换与自适应滤波相结合能有效去除脑电信号中的噪声干扰。 This article focuses on the method of noise cancellation for EEG signal based on the Autoregressive Model( ARM), wavelet transform (WT) and LMS Adaptive Filtering(AF). The experiment results show that the method based on WT and AF can process noise in the EEG signal effectively.
作者 吴平 陈心浩
出处 《电子工程师》 2006年第8期30-31,37,共3页 Electronic Engineer
关键词 自回归模型 小波变换 自适应滤波 脑电信号 消噪 AR models wavelet transform adaptive filtering EEG denoising
  • 相关文献

参考文献3

二级参考文献12

  • 1[1]Kay SM,Marple SL.Spectrum analysis-a modern perspective.Proc IEEE,1981;69:1380
  • 2[2]Djuric PM,Kay SM.Order selection of autoregressive models.IEEE Trans Signal Processing,1992;40(11):2829
  • 3[3]Broersen PMT,Wensink HE.Autoregressive model selection by a finite sample estimator for the Kullback-Leibler discrepancy.IEEE Trans Signal Processing,1998;46(7):2058
  • 4[4]Rezek IA,Roberts SJ.Stochastic complexity measures for physiological signal analysis.IEEE Trans BME,1998;45(9):1186
  • 5[5]Broesen PMT.Facts and fiction in spectral analysis.IEEE Trans Instrumentation Measurement,2000;49(4): 766
  • 6[6]Burg JP.Maximum likelihood spectral analysis.Proc 37th Meeting Soc of Exploration Geophysicists,Oklahoma,USA,1967;6:1
  • 7[7]Rechtschaffen A,Kales A.A manual of standardized terminology,techniques and scoring system for sleep stages of human subjects.Brain Information Service/Brain Research Institute,UCLA,1968
  • 8李世雄.小波变换与应用[M].北京:高等教育出版,1997.
  • 9Chui Charles K. An Introduction to Wavelets[M]. Xi'an: Xi'an Jiaotong University Press,1995 (in Chinese).
  • 10Mallat S. A theory for Multi-resolution signal decomposition: the wavelet representation[J]. IEEE Trans. PAMI, 1989, 11(7):674-693.

共引文献16

同被引文献25

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部