摘要
本文考虑多维广义线性模型的拟似然方程sum from i=1 to n X_i(y_i-μ(X_i^1β))=0,在一定条件下证明了此方程的解(?)渐近存在,并得到了其收敛速度,即■_n-β_0=O_p(■_n^(-1/2)),其中β_0为参数β的真值,■_n是方阵S_n=sum from i=1 to n X_iX_i^1的最小特征值.
In this paper, we study quasi-likelihood equation ^n∑i=1Xi(yi-μ(Xi^1β))=0 for multivariate generalized linear lnodels (GLMs). Under mild conditions, we prove the asymptotic existence of the solution βn to the above equation and present its convergence rate, that is βn-βo = Op(λ2n-1/2), where βo is the true value of parameter β and λn denotes the smallest smallest eigenvalue of the matrix Sn=^n∑i=1XiXi^1
出处
《应用概率统计》
CSCD
北大核心
2006年第3期288-294,共7页
Chinese Journal of Applied Probability and Statistics
基金
partly supported by National Natural Science Foundation of China and President Foundation of GUCAS.
关键词
多维广义线性模型
拟极大似然估计
弱相合性
收敛速度
Multivariate generalized liaear models, quasi-maximum likelihood estimates,weak consistency, convergence rate.