摘要
研究二阶泛函微分方程χ"(ι)-Ρ(ι)f(χ(τ(ι)))g(χ‘(σ(ι)))=0解的渐近性与振动性.给出了有界解振动的充分条件.
it is discussed that the oscillatory and the asymptotic behavior for the following second order functional differential equation X'(ι) -p(ι)f(χ(τ(ι)))g(χ '(ο(ι))) = 0The sufficient condition for the oscillation of the bounded solution are given.
关键词
泛函微分方程
渐近性
振动性
functional differential equation
osillatory behavior
asymptotic behavior