期刊文献+

一种改进的三维点集表面重建的区域生长算法 被引量:8

An Improved Region-Growing Algorithm for Surface Reconstruction from 3D Irregular Points
下载PDF
导出
摘要 介绍了一种改进的三维点集表面重建的区域生长算法。提出了一种基于三角形任意一边邻域拓扑关系的邻接三角形定位方法,充分利用了法向信息,采用由粗到精的提取策略,减少了候选表面三角形的数量,显著加快了表面重构的整体效率。提出了相应的局部拓扑一致性检测方法,确保了算法的稳健性,解决了传统算法的重叠面片和表面空洞等问题,并且重构的三角网格表面与被采样的物体表面拓扑差别最小。实验结果表明,本文算法可以重构具有任意拓扑的复杂表面。 An improved growing algorithm is presented for surface reconstruction from true three-dimensional points. Firstly, a novel method is designed for neighboring triangle location. This method takes the full advantages of surface normal to extract a preliminary set of candidate triangles. A method for local topological consistency test is proposed to ensure topologically correct reconstruction, the reconstructed surface thus has only small topological difference from the original surface. Experimental results show that the algorithm can efficiently obtain the reconstructed mesh surface with arbitrary tooology.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2006年第8期667-670,共4页 Geomatics and Information Science of Wuhan University
基金 国家973计划资助项目(2002CB312101) 湖北省青年杰出人才基金资助项目(2004ABB018)
关键词 表面重建 三维Delaunay剖分 区域生长 surface reeonstruction 3D Delaunay triangulation region-growing
  • 相关文献

参考文献13

  • 1Hoppe H, DeRose T, Duchamp T. Surface Reconstruction from Unorganized Points [J]. Computer Graphics, 1992, 26 (2): 71-78
  • 2Edelsbrunner H, Muche E P. Three-Dimensional Alpha Shapes[J]. ACM Trans on Graphics, 1994,13(1):43-72
  • 3Boissonnat J D. Geometric Structures for Three Dimensional Shape Representation[J]. ACM Trans on Graphics, 1984, 3 (4): 266-286
  • 4Veltkamp R C. Boundaries Through Scattered Points of Unknown Density[J]. Graphical Models and Image Processing, 1995, 57(6): 441-452
  • 5Amenta N, Bern M, Kamvysselis M. A New Voronoi-based Surface Reconstruction Algorithm[C]. SIGGRAPH' 98, Orlando, 1998
  • 6Gopi M, Krishnan S, Silva C T. Surface Reconstruction Based on Lower Dimensional Localized Delaunay Triangulation [J]. Eurographics, 2000,19(3): 467-478
  • 7王青,王融清,鲍虎军,彭群生.散乱数据点的增量快速曲面重建算法[J].软件学报,2000,11(9):1221-1227. 被引量:70
  • 8Huang J, Menq C H. Combinatorial Manifold Mesh Reconstruction and Optimization from Unorganized Points with Arbitrary Topology[J]. Computer-Aided Design, 2002, 34(2) : 149-165
  • 9Bernardini F, Mittleman J, Rushmeier H, et al.The Ball-pivoting Algorithm for Surface Reconstruction [J]. IEEE Trans Visualization Comput Graphics 1999, 5(4) :349-359
  • 10谭建荣,李立新.基于曲面局平特性的散乱数据拓扑重建算法[J].软件学报,2002,13(11):2121-2126. 被引量:18

二级参考文献9

  • 1Bajaj C L,Proceedings of the SIGGRAPH’95,1995年,109页
  • 2Hoppe, H., DeRose, T., Duchamp, T., et al. Surface reconstruction from unorganized points. Computer Graphics, 1992,26(2): 71~78.
  • 3Amenta, N., Bern, M., Kamvysselis, M. A new Voronoi-based surface reconstruction algorithm. In: Cohen, M., ed. SIGGRAPH 98 Conference Proceedings. Boston: Addison Wesley, 1998. 415~421.
  • 4Guo, B., Menon, J. and Willette, B. Surface reconstruction using alpha shapes. Computer Graphics Forum, 1997,16(4):177~190.
  • 5Vemuri, B.C., Mitiche, A., Aggarwal, J.K. Curvature-Based representation of objects from range data. Image and Vision Computing, 1986,4(2):107~114.
  • 6Brinkley, J. Knowledge-Driven ultrasonic three-dimensional organ modeling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1985,7(4):431~441.
  • 7Schmitt, F., Barsky, B., Du, W. An adaptive subdivision method for surface fitting from sampled data. Computer Graphics, 1986, 21(2):179~188.
  • 8Joe, B. Construction of three-dimensional Delaunay triangulations using local transformations. Computer Aided Geometric Design, 1991,8:123~142.
  • 9王青,王融清,鲍虎军,彭群生.散乱数据点的增量快速曲面重建算法[J].软件学报,2000,11(9):1221-1227. 被引量:70

共引文献76

同被引文献57

引证文献8

二级引证文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部