期刊文献+

基于分形理论的语音端点检测 被引量:5

Study of voice activity detection based on the fractal theory
下载PDF
导出
摘要 为提高语音端点检测(VAD)在较低信噪比(〈10dB)下的准确率,提出一种基于短时分形雏数的改进算法。结合语音信号的特点,对2种常用的语音信号分形雏数计算方法进行了比较和选择,同时采用动态跟随门限值实现语音端点的自适应检测。试验结果表明:对于信噪比6~10dB的带噪语音,此方法可以实现整段语音的检测,而且具有一定的噪声鲁棒性,系统运行期间能够自适应调整门限值以适应环境噪声的变化,提高了VAD算法的准确率。 A reformative algorithm, based on the short-time fractal dimension, is given to improve VAD (voice activity detection) in low signal-to-noise ratio (SNR) environments. Two ways to calculate the fractal dimensions of speech signals in common were compared, and one was selected to fit the speech signals. At the same time, a dynamically updated threshold was applied to adaptively detect the speech segments in noisy speech. The experimental results showed that the method could realize the detection of speech segment in low signal-to-noise ratio (SNR at 6-10dB) and had a good noise robustness.
作者 冯凯 刘珩
出处 《中国农业大学学报》 CAS CSCD 北大核心 2006年第4期114-116,共3页 Journal of China Agricultural University
关键词 VAD 分形维数 动态门限值 自适应 VAD fractal dimension dynamic threshold adaptive
  • 相关文献

参考文献5

二级参考文献41

  • 1唐容锡.CAD/CAM技术[M].北京:北京航空航天大学出版社,1994..
  • 2[1]Thompson C, Mulpur A,Mehta V. Transition to chaos in acoustically driven flow (acoustic streaming)[J]. J.Acoust. Soc.Am., 1991,90:2 097-2 103.
  • 3[2]Maragos P. Fractal aspects of speech signals: dimension and interpolation[A]. Proc. IEEE ICASSP[C]. 1991:417-420.
  • 4[3]Lai X Y., Huang A S,Wu M J., Intelligent interface of voice and speech system using fuzzy controller and fractal dimension[A]. Proc. ICCPCOL[C], Florida:1992.
  • 5GRIEDER W, KINSNER W. Speech Segmentation by Variance Fractal Dimension [J]. Electrical and Computer Engineering,1994, (2): 481-485.
  • 6CHEN LIANG, ZHANG XIONG-WEI. New Methods of Speech Segmentation and Enhancement Based on Fractal Dimension [J]. Signal Processing Proceedings, 2000, (1): 281-284.
  • 7OGATA S, SHIMAMURA T. Reinforced Spectral Subtraction Method to Enhance Speech Signal [ J ]. Electrical and Electronic Technology, 2001, ( 1 ): 242 -245.
  • 8PORUBA J. Speech Enhancement Based on Nonlinear Spectral Subtraction [ J ]. Devices, Circuits and Systems, 2002: T031-1- T031-4.
  • 9PANDEY P C, BHANDARKAR S M, BACHHER G K, et al. Enhancement of Alaryngeal Speech Using Spectral Subtraction [J]. Digital Signal Processing, 2002, (2): 591-594.
  • 10Morgan N.Bouland H,An introduction to the hybrid HMM connecitist approach,IEEE Signal Procassing Magazine,Vol.12,No.3,pp.25-42,May 1995.

共引文献28

同被引文献32

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部