期刊文献+

基于知识管理的精馏塔智能化控制模型 被引量:2

Intelligentized Control Model of Distillation Process Based on Knowledge Management
下载PDF
导出
摘要 为解决多变操作环境下精馏塔在线控制调优问题,分析了精馏塔传统的控制策略与缺陷,提出精馏塔基于知识管理的智能化控制框架。框架引入知识管理体系结构,解决了模型构建、表述、引用等更适应于工程化应用的信息化处理技术,采用单神经元自适应控制策略,确定不同条件下动态优化的馏出物组成,进而确定各控制点的控制参数。并研究精馏塔知识管理的模型表达方式,在面向对象建模方法基础上,采用面向智能体的建模方法,建立了客体(对象)类、主动实体(智能体)类和最优化模型类,通过知识推理将三个类关联形成精馏塔管控一体化的知识化智能平台,其中知识推理采用了基于人工神经网络的数据挖掘技术。实际应用证明该体系结构是可行的。 In order to research the optimized controlling method for distillation process under the uncertain circumstance, general control strategies of distillation process were analyzed, and the intelligentized control frame based on knowledge management was proposed and illustrated. Knowledge management was introduced to figure out cyber-techniques of model abstraction, expression and application, which is suitable to the engineering circumstance. Odd nerve cell self-adapting strategy was used to determine on-linely the optimized controlling parameters considering material cost, operating cost and market condition. As an important technique to realize the strategy, the object class, agent class and optimized model class were brought forward by using agent oriented modeling method. Furthermore, an illation method was established to link the three kinds of class to construct the intelligent plot of distillation tower controlling. The plot was aimed to realize integration of management and process controllin~ and to ensure the distillation process to operate at its best profit. The knowledge illation was characterized by data mining based on neural networks. The frame was proved to be feasible.
出处 《高校化学工程学报》 EI CAS CSCD 北大核心 2006年第4期628-633,共6页 Journal of Chemical Engineering of Chinese Universities
基金 国家自然科学基金(20306017)。
关键词 知识管理 神经网络控制 数据挖掘 面向智能体 knowledge management neural networks control data mining agent oriented
  • 相关文献

参考文献10

二级参考文献49

  • 1宋海华,余国琮,王秀英.精馏过程的动态模拟[J].化工学报,1994,45(4):413-421. 被引量:15
  • 2钟珞,李桂青.HKR——一个启发式知识求精系统[J].计算机科学,1995,22(2):73-75. 被引量:6
  • 3ZHOU Chuan—guang(周传光).Study on On—line Process Data Reconciliation Integrated Technology Based on Simulation and Artificial Neural Networks(基于过程模拟与神经网络的测量数据在线校正技术集成化研究)[M].Guangzhou(广州):South China University of Technology(华南理工大学),1999..
  • 4KONG Ling(孔玲).Development of General Chemical Engineering Process Data Reconciliation System(通用型化工过程测量数据校正软件的开发)[M].Qingdao(青岛):Qingdao Institute of Chemical Technology(青岛化工学院),2000..
  • 5YUAN Yong—gen(袁永根) LI Hua—sheng(李华生).Process System Data Rectification Technology(过程系统测量数据校正技术)[M].Beijing(北京):China Petrochemical Press(中国石化出版社),1996..
  • 6陈露晓.PowerBuilder7.0网络数据库[M].北京:北京邮电大学出版社,2000..
  • 7[2]Qi H Y, Zhou X G, Liu L H, Yuan W K. A Hybrid Neural Networks-first Principals Model for Fixed-bed Reactor. Chemical Engineering Science, 1999,54:2521-2526
  • 8[3]Qian Y,Zhang P R. Fuzzy Rule-based Modeling and Simulation of Imprecise Units and Processes.Canadian J. Chemical Engineering, 1999,77(1):186-190
  • 9[4]Baffi G, Martin E B, Morris A J. Non-linear Projection to Latent Structures Revisited: the Quadratic PLS Algorithm.Computers and Chemical Engineering, 1999,23:395-412
  • 10[5]National Institute of Standards and Technology.http://www.nist.gov/sc4/step/, 2001

共引文献65

同被引文献19

  • 1龚俊波,杨友麒,王静康.可持续发展时代的过程集成[J].化工进展,2006,25(7):721-728. 被引量:10
  • 2何友,彭应宁,陆大.多传感器数据融合模型综述[J].清华大学学报(自然科学版),1996,36(9):14-20. 被引量:85
  • 3Rainer D,Alexander H.Industrie 4.0:hit or hype?[J].Industrial Electronics Magazine,2014,8(2):56-58.
  • 4Jay Lee,Hung-A K,Shanhu Yang.Service innovation and smart analytics for Industry 4.0 and big data environment[J].Procedia CIRP,2014,16:3-8.
  • 5Qi Jing,Athanasios V,Vasilakos,et al.Security of the internet of things:perspectives and challenges[J].Wireless Networks,2014,16(6):66-69.
  • 6Friedrich B,Fabian D,Ines L,et al.Co-simulation environment for optimizing energy efficiency in production systems[J].Manufacturing Technology,2014,63:441-444.
  • 7Pelliccione A.Control engineering cyber security report[J].Control Engineering,2014,61(12):1-16.
  • 8Jorge P,Carlos T,Inigo B,et al.Visual computing as a key enabling technology for Industrie 4.0 and industrial internet[J].IEEE Computer Graphics and Applications,2014,35(2):26-40.
  • 9Florian A,Oliver K,Eberhand A.Planning and optimization of changeable production systems by applying an integrated system dynamic and discrete event simulation approach[J].Procedia CIRP,2014,17:386-391.
  • 10杨帆,刘畅.基于D-S证据理论的多传感器目标识别应用[J].武汉工程大学学报,2009,31(1):73-75. 被引量:9

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部