期刊文献+

地下水源热泵采能的水-热耦合数值模拟 被引量:27

Simulation of Changes in Geo-Temperature Field Due to Energy Abstraction from Underground Aquifers
下载PDF
导出
摘要 应用数值模拟方法对北京某地下水源热泵采能条件下地温场的演化进行了研究,并应用校正后的模型对未来5年的温度场演化进行了预测.模拟和预测结果表明:含水层中温度变化较为显著,含水层渗透性越好,温度锋面的运移速度越快,温度影响半径越大;相对而言,黏土层中温度变幅较小,温度变化存在明显的滞后现象;抽水井距离回灌井(群)越近,温度变化越灵敏,变幅越大;按现状强度进行地下含水层采能,抽水井温度在未来5年略呈上升趋势,总上升幅度约0.3~0.7℃. Based on borehole drilling data and regional hydrogeological data, a 3-D numerical model was developed to simulate the changes of geo-temperature field due to energy extraction using groundwater source heat pumps in Beijing, China. The calibrated model field for the next five years. The simulation and ity, the wider the ranges of temperature change was used to predict the future evolution of the geo-temperature prediction results indicate that the higher the aquifer permeabilin aquifers. Compared with aquifers, the temperature fields in clay layers change much slowly due to lower permeability, and the temperature of the pumping well changes much slowly in the well close to injection wells than that far from. According to the prediction results, with current energy abstraction load, the temperature of the pumping wells will increase about 0. 3-0. 7℃ in the next five years.
出处 《天津大学学报》 EI CAS CSCD 北大核心 2006年第8期907-912,共6页 Journal of Tianjin University(Science and Technology)
基金 国家"973"基础研究基金(2005CB724202).
关键词 采能 地温场 数值模拟 地下水源热泵 energy extraction geo-temperature field numerical simulation groundwater source heat pump
  • 相关文献

参考文献11

  • 1Sanner B, Karytsas C, Mendrinos D, et al. Current status of ground source heat pumps and underground thermal energy storage in Europe[J]. Geothermics, 2003,32:579-588.
  • 2Paksoy H O. Underground thermal energy storage:A choice for sustainable future [EB/OL]. http ://www. worldenergy.org, 2001-09-25.
  • 3Molz F J, Warman J C, Jones T E. Aquifer storage of heated water(Part Ⅰ ): field experiment[J]. Ground Water, 1978,16(6) :234-241.
  • 4Papadopulos S S, Larson S P. Aquifer storage of heated water ( Part Ⅱ ) : Numerical simulation of field results [J].Ground Water, 1978, 16(6) :242-248.
  • 5Sykes J F, Lantz R B, Pahwa S B, et al. Numerical simulation of thermal energy storage experiment conducted by Auburn University[J]. Ground Water, 1982,20(5 ) :569-576.
  • 6Melville J G, Molz F J, Guven O. Field experiments in aquifer thermal energy storage[J]. Journal of Solar Energy Engineering ( Transactions of the ASME ) , 1985, 107: 322-325.
  • 7Palmer C D, Blowes D W, Frind E O, et al. Thermal energy storage in an unconfined aquifer ( 1 ): Field injection experiment [J]. Water Resources Research, 1992, 28 ( 10 ) :2845 -2856.
  • 8Xue Y Q, Xie C H, Li Q F. Aquifer thermal storage-A numerical simulation of field experiments in China [J]. Water Resources Research, 1990, 26 (10) :2365-2375.
  • 9Paksoy H O, Andersson O, Abaci S, et al. Heating and cooling of a hospital using solar energy coupled with seasonal thermal energy storage in an aquifer [J]. Renewable Energy,2000,19: 117-122.
  • 10Tenma N, Yasukawa K, Zyvoloski G. Model study of the thermal storage system by FEHM code [J]. Geothermics,2003, 32:603-607.

同被引文献287

引证文献27

二级引证文献188

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部