期刊文献+

SPATIO-TEMPORAL CHAOTIC SYNCHRONIZATION FOR MODES COUPLED TWO GINZBURG-LANDAU EQUATIONS

SPATIO-TEMPORAL CHAOTIC SYNCHRONIZATION FOR MODES COUPLED TWO GINZBURG-LANDAU EQUATIONS
下载PDF
导出
摘要 On the basis of numerical computation, the conditions of the modes coupling are proposed, and the high-frequency modes are coupled, but the low frequency modes are uncoupled. It is proved that there exist an absorbing set and a global finite dimensional attractor which is compact and connected in the function space for the high-frequency modes coupled two Ginzburg-Landau equations(MGLE). The trajectory of driver equation may be spatio-temporal chaotic. One associates with MGLE, a truncated form of the equations. The prepared equations persist in long time dynamical behavior of MGLE. MGLE possess the squeezing properties under some conditions. It is proved that the complete spatio-temporal chaotic synchronization for MGLE can occur. Synchronization phenomenon of infinite dimensional dynamical system (IFDDS) is illustrated on the mathematical theory qualitatively. The method is different from Liapunov function methods and approximate linear methods. On the basis of numerical computation, the conditions of the modes coupling are proposed, and the high-frequency modes are coupled, but the low frequency modes are uncoupled. It is proved that there exist an absorbing set and a global finite dimensional attractor which is compact and connected in the function space for the high-frequency modes coupled two Ginzburg-Landau equations(MGLE). The trajectory of driver equation may be spatio-temporal chaotic. One associates with MGLE, a truncated form of the equations. The prepared equations persist in long time dynamical behavior of MGLE. MGLE possess the squeezing properties under some conditions. It is proved that the complete spatio-temporal chaotic synchronization for MGLE can occur. Synchronization phenomenon of infinite dimensional dynamical system (IFDDS) is illustrated on the mathematical theory qualitatively. The method is different from Liapunov function methods and approximate linear methods.
机构地区 School of Science
出处 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第8期1149-1156,共8页 应用数学和力学(英文版)
基金 Project supported by the National Natural Science Foundation of China (No. 10372054)
关键词 complete synchronization Ginzberg-Landau equations ATTRACTOR spatiotemporal chaos complete synchronization Ginzberg-Landau equations attractor spatiotemporal chaos
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部