期刊文献+

基于B超图像分析的脂肪肝辅助诊断方法研究 被引量:12

Computer-aided Diagnosis of Fatty Liver Based on Ultrasonic Images
下载PDF
导出
摘要 本研究为B超诊断脂肪肝建立计算机辅助诊断手段。通过分析正常肝和脂肪肝B超图像的图像特征,包括图像的近远场灰度比特征,以及灰度共生矩阵的角二阶矩、熵和反差分矩统计特征,组成特征矢量,再分别用κ-平均聚类算法、自组织特征映射人工神经网络和反向传播人工神经网络对特征矢量进行分类处理。κ-平均聚类算法对正常肝的识别率为100%,对脂肪肝的识别正确率为63.6%;自组织特征映射人工神经网络对正常肝的识别正确率达100%,对脂肪肝的识别正确率达93.94%;反向传播人工神经网络对正常肝和脂肪肝的识别率均为100%。本文建立的方法能较肉眼更精确地反映正常肝和脂肪肝B超图像的特征,如果再结合医生的临床经验能大大提高脂肪肝的诊断准确性。 This study aims to provide a computer-aided method for the diagnosis of fatty liver by B-scan ultrasonic imaging. Fatty liver is referred to the infiltration of triglycerides and other fats of the liver cells ;which affected the texture of liver tissue. In this paper, some features including mean intensity ratio, as well asi angular second moment, entropy and inverse differential moment of gray level co-occurrence matrix were extracted form Bscan ultrasonic liver images. Feature vectors which indicated two classes of images were created with the four features. Then we used re-means clustering algorithm, self-organized feature mapping (SOFM) artificial neural network and back-propagation (BP) artificial neural network to classify these vectors. The accuracy rate of κ- means clustering algorithm was 100% for normal liver and 63. 6% for fatty liver. The results of SOFM neural network showed that the accuracy rate was 84.8% for normal liver and 90. 9% for fatty liver. The accuracy rate of neural network was 100% both for normal liver and fatty liver. This technology could detect the characteristics of B-scan images of normal liver and fatty liver more accurately. It could greatly improve the accuracy of the diagnosis of fatty liver.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2006年第4期726-729,共4页 Journal of Biomedical Engineering
基金 四川省青年科技基金资助项目(05ZQ026-019) 四川省应用基础研究资助项目(03JY029-072-2)
关键词 脂肪肝 图像分析 辅助诊断 人工神经网络 Fatty liver Image analysis Computer-aided diagnosis Artificial neural network
  • 相关文献

参考文献8

  • 1California Pacific Medical Center, New Medications for Hepatitis B and C. Liver Review, 2000, 95(2):3
  • 2Paul Angulo, Nonalcoholic fatty liver disease, N Engl J Med,2002,346(16):1221
  • 3丁盛,王丽,闫新民,周建勇.脂肪肝的CT、B超诊断及对比研究(附280例报告)[J].临床肝胆病杂志,2002,18(6):372-373. 被引量:9
  • 4汪小毅,林江莉,李德玉,汪天富,郑昌琼,程印蓉.基于纹理分析的脂肪肝B超图像识别[J].航天医学与医学工程,2004,17(2):144-148. 被引量:19
  • 5Chung-Ming, Yung-Chang Chen, et al. Texture features for classification of ultrasonic liver images, IEEE Trans on Medical Imaging, 1992,11(2):141
  • 6Insana MF. Wangner RF, et al. Analysis of ultrasound image texture via generalized Rician statistics. Opt Eng, 1986, 25 :743
  • 7Haralick RM, Shanmugam K, Dinstein I. Textural features for image classification. IEEE Trans on Systems Man and Cybernetics, 1973,3(6):610
  • 8张道宾,曹春福,于洁,喻茂.脂肪肝超声图像定量分析研究[J].上海生物医学工程,1997,18(4):43-44. 被引量:6

二级参考文献9

共引文献30

同被引文献100

引证文献12

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部