摘要
将一种基于小波分析的自回归滑动平均求和(ARIMA)模型用于月径流的预测。首先利用小波变换良好的局部化特性,将月径流序列分解成不同时间尺度上的子序列;然后对各个子序列利用ARIMA模型进行预测。将采用基于小波分析的ARIMA模型的预测结果与直接使用ARIMA模型的预测结果进行比较,结果表明引入小波变换提高了月径流预报精度。
A wavelet analysis-based ARIMA model is proposed to forecast monthly runoff. With the help of the localization characteristic of wavelet transform, the monthly runoff series is first decomposed to sub-series on different time scales, and each sub-series is modeled and forecasted by the ARIMA model. Then, the forecast result from the wavelet analysis-based ARIMA model is compared with the result from the single ARIMA model. It is shown that the introduction of wavelet transform helps improve the precision of monthly runoff forecast.
出处
《水电自动化与大坝监测》
2006年第4期77-80,共4页
HYDROPOWER AUTOMATION AND DAM MONITORING