期刊文献+

Hamilton系统的大范围周期轨道的估计

Estimation of Large-Scale Periodic Orbits in Hamiltonian System
下载PDF
导出
摘要 Hamilton系统的相轨道位于正则值所确定的等能曲面上,而系统的大范围周期轨道可以代表等能曲面的同调类,这些同调类一般非平凡。而等能曲面的拓扑性质又由相空间的拓扑性质和Hamilton函数的大尺度性质决定,用这两种性质估算了受外力的刚体运动的等能曲面的第1同调群的秩。用同伦论、同调论和Morse理论把已有证明中的不足之处加以改进,得出基本定理的新的证明。 The phase orbits of a Hamiltonian system are on the equi-energy'level surface which is determined by the regular value. The large-scale periodic orbits of the system can represent the homology classes, which are generally non-trivial,on the equi-energy level surface and the topological properties of the equi-energy level surface are determined by that of the phase space and the large-scale properties of Hamiltonian function. These properties were used for estimation of the rank of the first homology group of the equi-energy level surfaces about the motion of a rigid body under external force. The proof was improved by the theory of differential topology and algebra topology.
出处 《上海工程技术大学学报》 CAS 2006年第2期170-173,共4页 Journal of Shanghai University of Engineering Science
关键词 MORSE理论 同调类 HAMILTON系统 刚体运动 Morse theory homology classes Hamiltonian systems motion of rigid body
  • 相关文献

参考文献6

  • 1古志鸣.非线性空间上的大范围周期轨道之同调类[J].应用数学和力学,1998,19(10):915-920. 被引量:2
  • 2SPANIER E H. Algebraic Topology[M]. New York:Springer Verlag, 1966.
  • 3BOTT R. Lectures on Morse theory, old and new[J].Bull Amer Math Soc (New Series), 1982, (7) : 331 -358.
  • 4HIRSCH M W. Differential Topology[ M]. New York:Springer Verlag, 1976.
  • 5MILNOR J W. Morse Theory[ M]. Princeton University Press, 1963.
  • 6YANG X S. Metric horseshoes[ J ]. Chaos Solitons and Fractals, 2004,19 (4) : 841 - 845.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部