摘要
设(a,b,c)是一组适合a为偶数的本原商高数,该文证明了:当c是素数方幂时,方程x2+by=cz仅有正整数解(x,y,z)=(a,2,2)可使y是偶数.
Let (a, b, c) be a primitive Pythagorean triple with a is even. In this paper we prove that if c is a prime power, then the equation x^2 + b^y = c^z has only the positive integer solution ( x, y, z) = ( a,2,2) with y is even.
出处
《广西师范学院学报(自然科学版)》
2006年第2期23-24,共2页
Journal of Guangxi Teachers Education University(Natural Science Edition)
基金
国家自然科学基金(10271104)
广东省自然科学基金(04011425)