期刊文献+

微型Hopkinson杆技术 被引量:9

Miniature-Hopkinson bar technique
下载PDF
导出
摘要 介绍了一种可对材料进行更高应变率动态性能实验的微型Hopkinson杆技术,对金属材料其应变可超过104s-1。使用激光径向位移测试仪和与传统Hopkinson杆对比实验,对微型Hopkinson杆技术的有效性进行了验证。实验结果表明,微型Hopkinson杆确定的试样应变与激光径向位移测试的结果相当吻合;在低应变率范围内,与传统Hopkinson杆的实验结果有很好的一致性。从而证明了微型Hopkinson杆技术可进行应变率在104s-1以上材料的动态力学性能实验。 A miniature-Hopkinson bar technique, which was used to measure the mechanical behavior of materials at high strain rates, was proposed. For some metals, the strain rate can exceed 10^4s^-1. The validation of this technique was proven by using laser occlusive radius detector (LORD), and by comparing tests with conventional Hopkinson bar technique. The results show that the strains measured by miniature Hopkinson bar technique have a good agreemant with the strains obtained with LORD. Over the low strain rate ranges, the flow stresses are consistent with that of conventional Hopkinson bar. The miniature Hopkinson bar can be utilized to measure the dynamic behavior of materials at the strain rate beyond 10^4s^-1.
出处 《爆炸与冲击》 EI CAS CSCD 北大核心 2006年第4期303-308,共6页 Explosion and Shock Waves
基金 国家自然科学基金重大研究计划重点基金项目(90405016)
关键词 固体力学 应变率 冲击载荷 HOPKINSON杆 动态力学性能 solid mechanics strain rate impact load Hopkinson bar dynamic mechanical behavior
  • 相关文献

参考文献13

  • 1Teng X, Wierzbicki T, Hiermaier S, et al. Numerical prediction of fracture in the Taylor test[J]. International Journal of Solids and Structures, 2005,42(9/10):2929-2948.
  • 2Rohr N H, Thoma K. Material characterization and constitutive modeling of ductile high strength steel for a wide range of strain rates[J]. International Journal of Impact Engineering, 2005,31(4) 5401--433.
  • 3Bessette G C, Becker E B, Taylor L M, et al. Modeling of impact problems using an h-adaptive, explicit Lagrang-Jan finite element method in three dimensions[J]. Computer Methods in Applied Mechanics and Engineering, 2003,192(13/14):1649-- 1679.
  • 4Jones S E, Jeffrey A Drinkard, Rule W K, et al. An elementary theory for the Taylor impact test[J]. International Journal of Impact Engineering, 1998,21(1/2) : 1-- 13.
  • 5Maudlin P J, Foster J C Jr, Jones S E. A continuum mechanics code analysis of steady plastic wave propagation in the Taylor test[J]. International Journal of Impact Engineering, 1997,19 (3):231-- 256.
  • 6Noble J P, Goldthorpe B D, Church P, et al. The use of the Hopkinson bar to validate constitutive relations at high rates of strain[J]. Journal of the Mechanics and Physics of Solids, 1999,47(5):1187--1206.
  • 7Jones S E, Paul J Maudlin, Joseph C, et al. An engineering analysis of plastic wave propagation in the Taylor test[J]. International Journal of Impact Engineering, 1997,19 (2) : 95-- 106.
  • 8Wang B, Zhang J, Lu G. Taylor impact test for ductile porous materials--Part 2: Experiments[J]. International Journal of Impact Engineering, 2003,28:499-- 511.
  • 9Dhararn C K H, Hauser F E. Determination of stress-strain characteristics at very high strain rates[J]. Experimental Mechanics, 1970,10:370-- 376.
  • 10Wulf G L, Richardson G T. The measurement of dynamic stress-strain relationships at very high strains[J]. Journal of Physics E: Scientific Instruments, 1974,7:167-- 169.

二级参考文献9

  • 1Colifton R J. High strain rate beheavior of metals[J]. Appl Mech Rev, 1990,43:9-22.
  • 2Stelly J, Dormeval R. Some results on the dynamic deformation of copper[A]. Kauata K, Shioiri J. High Velocity Deformation of Solids[C]. Berlin: Springer-Verlag, 1997 :82- 97.
  • 3Follansbee P S, Kooks U F. A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable[J]. Acta metal, 1988,36 (1): 81-93.
  • 4Regazzoni G, Kocks U F, Follansbee P S. Dislocation kinetics at high strain rates[J]. Acta Metal, 1987,35(12):2865-2875.
  • 5Dhararn C K H, Hauser F E. Determination of stress-strain characteristics at very high strain rates[J]. Exp Mech,1970,10:370-376.
  • 6Wulf G L, Richardson G T. The measurement of dynamic stress-strain relationships at very high strains[J]. Journal of Physics E: Scientific Instruments, 1974,7 : 167- 169.
  • 7Gorham D A. Measurement of stress-strain properties of strong metals at very high strainrates[A]. Harding J. Mechanical Properites at High Rates of Strain[C]. Bristol:The Institue of Physics, 1979:16-24.
  • 8Gorham D A. Specimen inertia in high strain-rate compression[J]. J Phys D, 1989,22:1888-1893.
  • 9王礼立.高应变率下材料动态力学性能[J].力学进展,1980,10(1):9-9.

共引文献6

同被引文献92

引证文献9

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部