期刊文献+

不完备信息系统中Rough集的扩充模型 被引量:3

Extension Model of Rough Set under Incomplete Information
下载PDF
导出
摘要 经典的Rough集理论所处理的信息系统必须是完备的.为了能够分析处理不完备的信息系统,需要建立新的扩充Rough集模型.对现有的几种比较有影响的Rough集扩展模型进行了分析研究,提出了一种带约束的相似关系Rough集模型,并将这些扩充模型之间的关系进行了分析比较.结果显示,基于约束相似关系的扩充Rough集模型优于基于容差关系的扩充Rough集模型和基于相似关系的扩充Rough集模型,使得对象的划分更加合理,符合人们在处理数据时的直观感觉. The classical rough set theory is based on complete information systems. The starting point of the rough set theory is an observation that objects with the same description are indiscernible with respect to the available information. It classifies objects using upper and lower-approximation defined on an indiscernihility relation, a kind of equivalent relation. But the indiscemibility relation may be too rigid in some situations. Therefore several generalizations of the rough set theory have been proposed, some of which extend the indiscemibility relation using more general similarity or tolerance relations. Unfortunately, these extensions have their own limitation. In this paper, several extension model of rough set under incomplete information are discussed. A concept of constrained similarity relation as a new extension of rough sets theory is introduced, and the upper-approximation and lower-approximation defined on constrained similarity relation are proposed. Furthermore, the performances of these extended relations are compared also. Analysis result shows that this relation can effectively process incomplete information and generate rational object classes.
作者 尹旭日 商琳
出处 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第4期337-341,共5页 Journal of Nanjing University(Natural Science)
基金 国家自然科学基金(60503022)
关键词 ROUGH集 不完备信息系统 容差关系 相似关系 约束相似关系 rough set, incomplete information system, tolerance relation, similarity relation, constrained similarity relation
  • 相关文献

参考文献8

  • 1Pawlak Z. Rough sets. International Journal of Information and Computer Science, 1982,11(5):341-356.
  • 2尹旭日,商琳,何佳洲,陈世福.Rough集挖掘时间序列的研究[J].南京大学学报(自然科学版),2001,37(2):182-187. 被引量:8
  • 3Chmielewski M R, Grzymala-Busse J W, Peterson N W, et al. The rule induction system LERS-A version for personal computers. Found Comput Decision Sciences, 1998,18(3 4): 181-212.
  • 4Kryszkiewicz M. Rough set approach to incomplete information systems. Information Sciences,1998,112(1-4): 39-49.
  • 5Kryszkiewicz M. Rules in incomplete information system. Information Sciences, 1999, 113 (1-4) :271-292.
  • 6尹旭日,赵志宏,商琳,陈世福.基于GDT的不完整信息系统规则发现[J].计算机研究与发展,2001,38(11):1290-1294. 被引量:3
  • 7Stefanowski J, Tsoukias A. On the extension of rough sets under Incomplete Information. Zhong N, Skowron A, Ohsuga S. Proceedings of the 7th International Workshop on New Directions in Rough Sets,Data Mining, and Granular Soft,Data Mining, and Granular Soft Computiong. Yamaguchi.. Physica-Verlag,1999,73-81.
  • 8王国胤.Rough集理论在不完备信息系统中的扩充[J].计算机研究与发展,2002,39(10):1238-1243. 被引量:303

二级参考文献13

  • 1[1]Srikant R, Agrawal R. Mining sequential patterns: Generalizations and performance improvements. Proceedings of the Fifth International Conference on Extending Database Technology (EDBT). France: Avignon, 1996:3~17.
  • 2[2]Mannila H, Toivonen H. Discovering generalized episodes using minimal occurrences. Second InternationalConference on Knowledge Discovery and Data Mining. Portland: Oregon, 1996:146~ 151.
  • 3[3]Mannila H, Toivonen H. Discovering frequent episodes in sequences. First International Conference onKnowledge Discovery and Data Mining (KDD '95). AAAI Press, 1995:210~215.
  • 4[4]Ostroff S. Temporal Logic for Real-Time Systems. Research Studies Press LTD, John Wiley & Sons Inc,1989.
  • 5[5]Berndt J D, Clifford J. Finding patterns in time series: A dynamic programming approach. Fayyad U, Piatetsky-Shapiro G, Smyth P, et al. Advances in Knowledge Discovery and Data Mining. MIT Press,1996: 229~ 248.
  • 6[6]Bazan Jan G, Skowron A, Synak Piotr. Market Data Analysis: A Rough Set Approach. Technical report:6/94 University of Warsaw, 1994.
  • 7[7]Golan R, Edwards D. Temporal Rules Discovery using Datalogic/R + with Stock Market Data. Ziarko WP. Rough Sets, Fuzzy Sets and Knowledge Discovery. Workshops In Computing series, Springer-Verlag,1993: 74~ 81.
  • 8[8]Golan R,Ziarko W. A Methodology for Stock Market Analysis Using Rough Set Theory. Proceedings ofIEEE/IAFE Conference on Computational Intelligence for Fiancial Engineering. New York City, 1995:32~ 40.
  • 9[9]Anders T B. Mining Time Series Using Rough sets-A Case study. Proceeding of first European sysposium,PKDD'97. Norway: Trondheim, 1997:351~358.
  • 10Dong J Z,J Japanese Society Artificial Intelligence,2000年,15卷,2期,276页

共引文献310

同被引文献33

  • 1http://archive.ics.uci.edu/ml/
  • 2Pawlak Z. Rough sets: Theoretical aspects of reasoning about data. Dordrecht: Kluwer Aca- demic Publishers, 1991, 229.
  • 3Deng D Y, matrix and Andrzej S, technology. Huang H K. A new discernibilityfunction. Wang G Y, James F ts, et al. Rough sets and knowledge Springer-Verlag, 2006, 114-121.
  • 4Wang J, Wang J. Reduction algorithms based on discernibility matrix: The order attributes method. Journal of Computer Science and Tech- nology, 200, 16(6):489-504.
  • 5Zheng Z, Wang G Y, W Y. A rough set and rule tree based incremental knowledge acquisi tion algorithm. Fundamenta Informaticae-Spe cial Issue on the 9^th International Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing, 2003, 59:299 - 313.
  • 6Kryszkiewicz M, Rybinski H. Finding reduets in composed information systems. Proceedings of International Workshop on Rough Sets and Knowledge Discovery, Springer-Verlag, 1993, 259-268.
  • 7Deng D Y. Attribute reduction among decision tables by voting. Proceedings of 2008 IEEE In- ternational Conference of Granular Computing, 2008, 183-187.
  • 8Bazan G J. A comparison of dynamic non-dy- namic rough set methods for extracting laws from decision tables. Polkowski L, Skowron A. Rough Sets in Knowledge Discovery 1 : Method- ology and Applications, Heidelberg: Physica- Verlag, 1998, 321-365.
  • 9Bazan G J, Nguyen H S, Synak, P, et al. Rough set algorithms in classification problem. Polkowski L, Tsumoto S, Lin T Y. Rough Set Methods and Applications. Heidelberg: Physi- ca-Verlag, 2000, 49 - 88.
  • 10Deng D Y, Wang J Y, Li X J. Parallel reducts in a series of decision subsystems. Proceedings of the 2na International Joint Conference on Computational Sciences and Optimization, 2009, 2:377-380.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部