期刊文献+

非傍轴矢量高斯光束的光强表示 被引量:3

Intensity representation of nonparaxial vectorial Gaussian beams
下载PDF
导出
摘要 基于瑞利-索末菲衍射积分,未使用任何近似,对非傍轴矢量光束的两种光强表示式,即传统光强公式和时间平均坡印廷矢量的z分量进行了研究。对非傍轴矢量高斯光束详细数值计算结果的比较表明,两种表示式之间的差异,即两者的相对误差与束腰宽度及传输距离和波长的比值有关。对非傍轴矢量高斯光束,若传输距离与波长的比值为10,束腰宽度与波长的比值大于等于0.8,则最大相对误差不到1.5%。因此,传统光强公式是可用的。 Based on the vectorial Rayleigh-Sommerfeld diffraction integrals, the two expressions for the intensity of nonparaxial vectorial beams, i.e. , the conventional intensity expression and the z component of the time-averaged Poynting vector, are studied without using any approximation. A detailed numerical comparison for nonparaxial vectorial Gaussian beams shows that the discrepancy between the two expressions, namely, the relative error, depends on the ratio of the waist width to the propagation distance and that of the wavelength to the propagation distance, respectively, and the error decreases with the increase of the two ratios. For nonparaxial vectorial Gaussian beams, if the ratio of the wavelength to the propagation distance is 10, and the ratio of the waist width to the propagation is no less than 0.8, the maxima relative error is no more than 1.5%. Thus, the conventional intensity is applicable.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2006年第7期1057-1060,共4页 High Power Laser and Particle Beams
基金 国家自然科学基金资助课题(10574097) 海南省自然科学基金资助课题(80598)
关键词 激光光学 非傍轴高斯光束 传统光强表示式 时间平均坡印廷矢量的z分量 相对误差 Laser optics Nonparaxial Gaussian beam Conventional intensity expression z component of the time-averaged Poynting vector Relative error
  • 相关文献

参考文献11

  • 1Born M,Wolf E.Principle of optics (7th ed.)[M].Combridge:Combridge University Press,1999.
  • 2曹清,邓锡铭,郭弘.横截面上光强的精确表述[J].光学学报,1996,16(7):897-902. 被引量:44
  • 3Agrawal G P.Gaussian beam propagation beyond the paraxial approximation[J].J Opt Soc Am A,1979,69(4):575-578.
  • 4Laabs H,Friberg A T.Nonparaxial eigenmodes of stable resonators[J].IEEE J Quantum Electron,1999,35(2):198-207.
  • 5Zeng X D,Liang C H,An Y Y.Far-field propagation of an off-axis Gaussian wave[J].Appl Opt,1999,38(30):6253-6256.
  • 6Chen C G,Konkola P T,Ferrera J,et al.Analyses of vector Gaussian beam propagation and the validity of paraxial and spherical approximations[J].J Opt Soc Am A,2002,19(2):404-412.
  • 7Duan K L,Lü B D.Nonparaxial propagation of vectorial Gaussian beams diffracted at a circular aperture[J].Opt Lett,2003,28(24):2440-2442.
  • 8高曾辉,吕百达.矢量非傍轴双曲余弦-高斯光束[J].强激光与粒子束,2005,17(10):1479-1483. 被引量:5
  • 9Porras M A.Non-paraxial vectorial moment theory of light beam propagation[J].Opt Commun,1996,127(6):79-95.
  • 10Porras M A.Finiteness and propagation law of the power density second-order moment for diffracted scalar light beam[J].Optik,1999,110(9):417-420.

二级参考文献14

  • 1郭弘,J Opt Soc Am A,1995年,12卷,3期,600页
  • 2郭弘,J Opt Soc Am A,1995年,12卷,3期,607页
  • 3邓锡铭,有限束宽光动力学,1993年
  • 4Lax M, Louisell W H, McKnight W B. From Maxwell to paraxial wave optics[J]. Phys Rev A, 1975, 11 (4) :1365-1370.
  • 5Agrawal G P, Pattanatak D N. Gaussian beam propagation beyond the paraxial approximation[J]. J Opt Soc Am A, 1979, 68(4):575-578.
  • 6Chen C G, Konkola P T, Ferrera J, et al. Analyses of vector Gaussian beam propagation and the validity of paraxial and spherical approximations[J]. J Opt Soc Am A, 2002, 19(2) :404-412.
  • 7Wünsche A. Transition from the paraxial approximation to exact solutions of the wave equation and application to Gaussian beams[J]. J Opt Soc Am A, 1992, 9(5) :765-774.
  • 8Zeng X, Liang C, An Y. Far-field propagation of an off-axis Gaussian wave[J]. Appl Opt, 1999, 36..6253-6256.
  • 9Duan K L, Lu B D. Vectorial nonparaxial propagation equation of elliptical Gaussian beams in the presence of a rectangular aperture[J]. J Opt Soc Am A, 2004, 21(9) :1613-1620.
  • 10Lu B D, Duan K L. Nonparaxial propagation of vectorial Gaussian beams diffracted at a circular aperture[J]. Opt Lett, 2003, 28(24):2440-2442.

共引文献45

同被引文献23

  • 1赵阶林,任广军.液晶电控效应的实验研究[J].液晶与显示,2006,21(4):384-387. 被引量:17
  • 2L. Keesey. Emerging Optics Technology to Fly on Microsatellite [OL]. http://www.nasa.gov/topics/technology/features/kitchen-optics.html, June 4, 2012.
  • 3L. Kipp, M. Skibowskl, R. L. Johnson et al.. Sharper images by focusing soft X-rays with photon sieves[J]. Nature, 2001, 414(6860): 184-188.
  • 4Qing Cao, Jurgen Jahns. Nonparaxial model for the focusing of high numerical aperture photon sievers[J]. J. Opt. Soc. Am. A, 2003, 20(6): 1005-1012.
  • 5Qing Cao, Jurgen Jahns. Focusing analysis of the pinhole photon sieve:individual far field mode[J]. J. Opt. Soc. Am. A, 2002, 19(12): 2387-2393.
  • 6Zhifen Chen, Chinhua Wang, Donglin Pu et al.. Ultra large multi region photon sieves[J]. Opt. Express, 2010, 18(15): 16279-16288.
  • 7Changqing Xie, Xiaoli Zhu, Hailiang Li et al.. Feasibility study of hard-X-ray nanofocusing above 20 keV using compound photon sieves [J]. Opt. Lett., 2010, 35(23): 4048-4050.
  • 8Geoff Andersen. Large optical photon sieve[J]. Opt. Lett., 2005, 30(22): 2976-2978.
  • 9Yuchao Zhang, Nan Gao, Changqing Xie. Using circular Dammann gratings to produce impulse optic vortex rings [J]. Appl. Phys. Lett., 2012, 100(4): 041107.
  • 10Changqing Xie, Xiaoli Zhu, Hailiang Li. Toward two dimensional nanometer resolution hard X-ray differential interference contrast imaging using modified photon sieves[J]. Opt. Lett., 2012, 37(5): 749-751.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部