期刊文献+

基于多通道Gabor滤波和D-S证据理论的虹膜识别

Iris Recognition Based on Multi-channel Gabor Filtering and D-S Evidence Theory
下载PDF
导出
摘要 为了提高虹膜识别的准确性和稳定性,研究了Gabor滤波的虹膜特征提取方法,并在此基础上对虹膜特征进行了D-S(Dempster-Shafer)证据理论的改进.提出了多通道Gabor滤波和D-S证据理论的虹膜识别方法.该方法充分考虑到虹膜图像获取中被考察对象的姿态和环境光照等不确定性因素对识别结果的影响,通过选择不同频率和方向的Gabor滤波器组,有效提取虹膜特征,并结合D-S证据理论实现了虹膜特征决策.实验结果表明,所提方法增强了虹膜识别过程中抵御图像噪声、干扰和亮度变化等不利因素的能力,与标准的Gabor方法相比,识别率平均提高了4.05%. To improve the accuracy and stability of iris recognition, this paper studies a feature extraction method via Gabor filtering and modifies the iris features using D-S (Dempster-Shafer) evidence theory. Then, an iris recognition method based on muhichannel Gabor filtering and D-S evidence theory is developed. Taking into consideration the influences of uncertain factors on iris recognition such as poses of the observed subject and environmental illumination changes during capturing iris images, the proposed method extracts iris features effectively through employing banks of Gabor filter at different frequencies and directions, and makes decision on iris features combining with D-S evidence theory. Experimental results indicate that the proposed method improves the performance excellently for iris images with noise, disturbance and environmental illumination changes, and increases the accuracy in recognition rate at an average 4.05% more than the conventional Gabor method.
作者 王勇 韩九强
出处 《信息与控制》 CSCD 北大核心 2006年第4期428-431,437,共5页 Information and Control
基金 国家自然科学基金资助项目(60174030) 高等学校博士学科点专项科研基金资助项目(20050698025)
关键词 虹膜识别 GABOR滤波器 D—S证据理论 特征提取 iris recognition Gabor filter D-S evidence theory feature extraction
  • 相关文献

参考文献8

  • 1Daugman J G. High confidence visual recognition of persons by a test of statistical independence [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15 ( 11 ) : 1148 -1161.
  • 2Boles W W. Security system based on human iris identification using wavelet transform [ J ]. Engineering Applications of Artificial Intelligence, 1998, 11 ( 1 ) : 77 - 85.
  • 3Ma L, Wang Y H, Tan T N. Iris recognition using circular symmetric filters [ A]. Proceedings of the 16th International Conference on Pattern Recognition [ C ]. Los Alamitos, CA, USA:IEEE Computer Society, 2002. 414 -417.
  • 4王勇,韩九强,刘鹏飞.基于多尺度策略的三步虹膜定位算法研究[J].微电子学与计算机,2005,22(4):26-29. 被引量:6
  • 5Gabor D. Theory of communication [ J ]. Journal of the Institute of Electrical Engineers, 1946, 93(3): 429-457.
  • 6Dempster A P. Upper and lower probabilities induced by a multivalued mapping [ J ]. The Annals of Mathematical Statistics,1967, 38( 1 ) : 325 -339.
  • 7Shafer G. A Mathematical Theory of Evidence [ M ]. Princeton:Princeton University Press, 1976.
  • 8Tan T N. Center for biometrics and security research: iris imagedatabase [ EB/OL]. hnp ://www. sinobiometrics. com, 2002-10-10/2003 -06 -08.

二级参考文献7

  • 1J Daugman. U. S. Patent Biometic Personal Identification System Based on Iris Analysis, 1994. 5:291~560.
  • 2R P Wildes. Iris Recognition:An Emerging Biometric Technology. Proceedings of the IEEE, 1997, 85: 1348~1363.
  • 3J Daugman. The Important of Being Random: Statistical Principles of Iris Recognition. Pattern Recognition, 2003,36: 279~291.
  • 4D Ioannou, W Huda, A F Laine. Circle Recognition Through a 2D Hough Transform and Radius Bislogram.Image and Vision Computing, 1999, 17(1): 15~26.
  • 5Lukac, Rastislav. Adaptive Vector Median filtering. Pattern Recognition Letters, 2003, 24(12): 1889~1899.
  • 6J Daugman, Statistical Richness of Visual Phase Information: Update on Recognizing Persons by Iris Patterns, International Journal of Computer Vision, 2001,45(1): 25~38.
  • 7王成儒,胡正平,练秋生.一种虹膜定位算法[J].计算机辅助设计与图形学学报,2002,14(10):950-952. 被引量:30

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部