期刊文献+

基于免疫原理的T-S模糊系统在线建模方法

On-line Modeling for T-S Fuzzy System Based on Immune Theory
下载PDF
导出
摘要 基于人工免疫原理,提出一种在线构造T-S模糊系统的建模方法.该方法结合网格空间划分方法,以建模数据为抗原,模糊规则为抗体,采用人工免疫原理确定系统结构,并应用最小二乘方法估计线性规则后件参数.该方法具有简单、学习速度快、实时性强等特点,适合多输入模糊系统的在线学习和结构调整. A modeling method is proposed to establish T-S fuzzy system based on immune theory. Using the grid-type method to partition the space, regarding the modeling data as the antigen and the fuzzy rules as the antibody, this method determines the structure of T-S system with immune theory and adopts the least square method to estimate consequent parameters of the linear rule. With many advantages such as simplicity, fast learning and powerful realtime performance, this method is suitable for online learning and struture adjustment of multi-input fuzzy systems.
出处 《信息与控制》 CSCD 北大核心 2006年第4期432-437,共6页 Information and Control
关键词 T-S模糊系统 免疫原理 在线建模 空间划分 抗体 T-S fuzzy system immune theory on-line modeling space partition antibody
  • 相关文献

参考文献13

  • 1Chen M Y. Rule-base self-generation and implication for data-driven fuzzy models [ J ]. Fuzzy Sets and Systems, 2004, 14(2) : 243 - 265.
  • 2Hunt J E, Cooke D S. Learning using an artificial immune system[J]. Journal of Network and Computer Applications 1996, 19(2) : 189 -212.
  • 3Peng H, Ozaki T, Haggan-Ozaki V, et al. A parameter optimization method for radial basis function type models [ J ]. IEEE Transactions on Neural Networks, 2001, 14(2) : 432 -438.
  • 4周颖,郑德玲,裘之亮,刘聪.一种人工免疫与RBF神经网络结合的混合算法的应用[J].计算机工程与应用,2004,40(1):39-40. 被引量:10
  • 5Hunt J E, Cooke D E. Learning using an artificial immune system[J]. Journal of Network and Computer Application, 1996, 19(2) : 189 -212.
  • 6张军,刘克胜,王煦法.一种基于免疫调节和共生进化的神经网络优化设计方法[J].计算机研究与发展,2000,37(8):924-930. 被引量:32
  • 7宫新保,周希朗,胡光锐.基于免疫进化算法的径向基函数网络[J].上海交通大学学报,2003,37(10):1641-1644. 被引量:10
  • 8Ying W L, Sundararajan N, Saratchandran P. Identification of time-varying nonlinear systems using minimal radial basis function networks [ J ]. IEE Proceedings: Control Theory and Application,1997, 144(2) : 202 -208.
  • 9Diao Y X, Passino K M. Immunity-based hybrid learning methods for approximator structure and parameter adjustment [ J ].Engineering Applications of Artificial Intelligence, 2002, 15(6) : 587 -600.
  • 10Alexandridis A, Haralambos S, Bafas G. A new algorithm for online structure and parameter adaptation of RBF networks [ J ].Neural Networks, 2003, 16(7): 1003-1017.

二级参考文献18

  • 1张乃尧 阎平凡.神经网络与模糊控制[M].清华大学出版社,1996.78-90.
  • 2Bernard Mulgrew. Applying radial basis functions[J]. IEEE Signal Processing Magazine, 1996, 13(2) :50--65.
  • 3Licheng Jiao, Lei Wang. A novel genetic algorithm based on immunity [J. IEEE Trans on Systems,M an and Cybernetics, 2000,30 (5) : 552 -- 561.
  • 4Moody J, Darken C. Fast learning in networks of locally-turned processing units[J]. Neural Computation, 1989, 6(1):281-294.
  • 5Karayiannis N B, Mi G W. Growing radial basis neural networks: merging supervised and unsupervised learning with network growth techniques[J].IEEE Trans on Neural Networks, 1997,8(6) : 1492-1506.
  • 6Yao Xin, Liu Yong. New evolutionary system for evolving artifical neural networksp[J]. IEEE Trans on Neural Networks, 1997, 8(3) :694-713.
  • 7Broomhead D S, Lowe D. Multivariable functional interpolation and adaptive networks[J]. Complex System, 1988, 11(2):321--355.
  • 8吴敏毓,医学免疫学,1995年
  • 9黄春琳,周一宇.模拟调制信号的神经网络识别方法[J].电子对抗,1998(3):13-18. 被引量:3
  • 10刘克胜,曹先彬,郑浩然,王煦法.基于免疫算法的TSP问题求解[J].计算机工程,2000,26(1):1-2. 被引量:54

共引文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部