期刊文献+

改进蚁群优化算法在配电网网架规划中的应用 被引量:25

Application of Improved Ant Colony Optimization Algorithm in Distribution Network Planning
下载PDF
导出
摘要 从转移概率和信息素的动态更新机制两方面对传统蚁群算法进行了改进。转移概率设计中采用2个参数的联动控制,实现了Dorigo和Maniezzo的设想。信息素动态更新机制使信息素权重随迭代次数增加而改变,实现了对整个可行域的搜索全面而迅速,弥补了传统蚁群算法训练效率低下和易陷入局部极小的不足。配电网优化的结果表明该算法的有效性。 Traditional ant colony algorithm is modified in the aspects of transition probability and dynamic updating mechanism sociohormone. In the design of transition probability the gang control of two parameters is adopted to implement the Dorigo and Maniezzo's conception proposed in the year of 1992. The dynamic updating mechanism of sociohormone makes the weight of sociohormone varied with the increment of iteration times, so the all-round and speedy search in whole feasible region is realized and the defects of low training efficiency and easy to fall into local minimum in traditional ant colony algorithm are remedied. The result of distribution network optimization shows that the modified algorithm is effective.
出处 《电网技术》 EI CSCD 北大核心 2006年第15期85-89,共5页 Power System Technology
关键词 配电网优化 改进蚁群算法 转移概率 更新机制 信息素 distribution network optimization improved ant colony algorithm transition probability updating mechanism sociohormone
  • 相关文献

参考文献17

  • 1拉可维.配电网网络规划与设计[M].北京:中国电力出版社,1999.
  • 2毕鹏翔,刘健,张文元.配电网络重构的改进支路交换法[J].中国电机工程学报,2001,21(8):98-103. 被引量:140
  • 3Zhong Danhong, Wu Jie, Kong Dejian. Enhanced genetic algorithm in electric network planning[J]. Intelligent Control and Automation,2000. Proceedings of the 3rd World Congress, 2000, 1(6): 53-57.
  • 4Rivas Davalos F, Irving M R. An efficient genetic algorithm for optimal large-scale power distribution network planning[J]. Power Tech Conference Proceedings, 2003, 3(6):23-26.
  • 5Han K H, Kiln J H. Quantum inspired evolutionary algorithm for a class of combinatorial optimization[J]. IEEE Trans on Evolutionary Computation, 2002, 6(6): 580-593.
  • 6葛少云,刘自发,余贻鑫.基于改进禁忌搜索的配电网重构[J].电网技术,2004,28(23):22-26. 被引量:90
  • 7胡敏,陈元.配电系统最优网络重构的模拟退火算法[J].电力系统自动化,1994,18(2):24-28. 被引量:59
  • 8Jun Ouyang, Gui Rong Yah. A multi-group ant colony system algorithm for TSP[J]. Proceedings of 2004 International Conference on Machine Learning and Cybernetics, 2004, 1(8): 117-121.
  • 9杨其余.配电网络[M].北京:中国电力出版社,1998..
  • 10陈根军,王磊,唐国庆.基于蚁群最优的配电网规划方法[J].电网技术,2003,27(3):71-75. 被引量:39

二级参考文献22

  • 1胡敏,陈元.配电系统最优网络重构的模拟退火算法[J].电力系统自动化,1994,18(2):24-28. 被引量:59
  • 2邓佑满,张伯明,相年德.配电网络电容器实时优化投切的逐次线性整数规划法[J].中国电机工程学报,1995,15(6):375-383. 被引量:45
  • 3Wen F,J Electric Power Syst Res,1997年
  • 4Fan M,Electric Power System Research,1993年,27卷,191页
  • 5Hsu Y Y,IEE Proce.C,1993年,140卷,6期,433页
  • 6Mesut E B,IEEE Trans Power Delivery,1989年,4卷,1期
  • 7Grainger J J,IEEE Trans Power Apparatus Systems,1982年,101卷,8期,2420页
  • 8Civanlar S, Grainger J J, Yin H et al. Distribution feeder reconfiguration for loss reduction[J]. IEEE Trans on Power Delivery, 1988, 3(3): 1217-1223.
  • 9Jiang D, Baldick R. Optimal electric distribution system switch reconfigurafion and capacitor control[J]. IEEE Trans on Power Systems, 1995, 11(2): 890-897.
  • 10Kim H, Ko Y, Jung K-H. Artificial neural- network based feeder reconfiguration for loss reduction in distribution systems[J]. IEEE Trans onPowerDelivery, 1993, 8(3): 1356-1366.

共引文献301

同被引文献266

引证文献25

二级引证文献236

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部