期刊文献+

类Hermite插值的切触有理插值 被引量:2

Osculatory rational Hermite-like interpolation
下载PDF
导出
摘要 该文构造了一种混合的切触有理插值,其表示形式类似于Hermite多项式插值;与传统的切触有理插值相比较,该文提出的构造方法将连分式切触插值与多项式相结合,具有更好的灵活性。 In this paper, a new blending osculatory rational interpolation is presented. Its representation is similar to Hermite polynomial interpolation. Compared with traditional osculatory interpolation, the new construction method, which combines osculatory continued fraction interpolation with the polynomial function, is more flexible.
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第8期1042-1044,共3页 Journal of Hefei University of Technology:Natural Science
基金 国家自然科学基金资助项目(10171026 60473114) 安徽省自然科学基金资助项目(03046102)
关键词 切触有理插值 Hermite多项式插值 Viscovatov算法 osculatory rational interpolatiom Hermite polynomial interpolation Viscovatov algorithm
  • 相关文献

参考文献10

  • 1Cuyt A,Verdonk B. Multivariate rational interpolation[J]. Computing, 1985, 34:41-61.
  • 2Cuyt A, Verdonk B. Multivariate reciprocal differences for branched Thiele continued fraction expansions[J]. Journal of Computational and Applied Mathematics, 1988. 21: 145-160.
  • 3Siemaszko W. Thiele-type branched continued fractions for two variable functions[J]. Journal of Computational and Applied Mathematics, 1983. 9 : 137-153.
  • 4Tan J Q. Bivariate blending rational interpolants[J]. Approximation Theory and Its Application. 1999. 15 (2) : 74-83.
  • 5Tan J Q, Fang Y. Newton-Thiele's rational interpolants[J]. Numerical Algorithm. 2000, 24 : 141-157.
  • 6Tan J Q, Tang S. Composite schemes for multivariate blending rational interpolation[J]. Journal of Computational and Applied Mathematics, 2002, 144(1/2): 263-275.
  • 7Tan J Q. Bivariate rational interpolants with rectangle-hole structure[J]. Journal of Computational Mathematics. 1999.17(1):1-14.
  • 8王仁宏.数值有理逼近[M].上海:上海科学技术出版社,1980.1-23.
  • 9Salzer H E. Note on osculatory rational interpolation[J].Mathematics of Computation, 1962, 16:486-491.
  • 10Jie-qing Tan (Institute of Applied Mathematics, College of Science and CAD/CG Division College of Computer & Information Hefei, University of Technology, Hefei 230009, China).THE LIMITING CASE OF THIELE'S INTERPOLATING CONTINUED FRACTION EXPANSION[J].Journal of Computational Mathematics,2001,19(4):433-444. 被引量:12

二级参考文献9

  • 1G. Baker,P. Graves-Morris.Pade Approximations[]..1981
  • 2Cuyt A,Wuytack L.Nonlinear methods in numerical Analysis[]..1987
  • 3A. Cuyt,B. Verdonk.Different techniques for the construction of multivariate rational interpolants[].Nonlinear Numerical Methods and Ratiional Approximation.1987
  • 4Stoer,J.,Bulirsch,R. Introduction to Numerical Analysis . 1992
  • 5Wang,R. H.Numerical Rational Apprdriation[]..1980
  • 6Siemaszko,W.Thiele-type branched continued fractions for two-variable functions[].Journal of Computational and Applied Mathematics.1983
  • 7Xu X.Y,Li J.K,Xu G.L.An Introduction to Pade Approximants[]..1990
  • 8Cuyt A,Verdonk B.Multivariate reciprocal differences for branched Thiele continued fractionexpansions[].Journal of Computational and Applied Mathematics.1988
  • 9Brezinski C.Acceleration de la Convergence en Analyse Numerique[].Lecture Notes in Mathematics.1977

共引文献30

同被引文献20

  • 1Qian-jin Zhao,Jie-qing Tan.BLOCK BASED NEWTON-LIKE BLENDING INTERPOLATION[J].Journal of Computational Mathematics,2006,24(4):515-526. 被引量:18
  • 2梁艳,唐烁.矩形网格上Newton-Hermite-Thiele型切触有理插值[J].合肥工业大学学报(自然科学版),2007,30(7):903-907. 被引量:1
  • 3Wemer H. A reliable method for rational interpolation [C]//Wuytack L. Pade approximation and its applications.Berlin: Springer ,1979 : 257- 277.
  • 4Wang J B, Gu C Q, Vector valued Thiele-Wemer-type osculatory rational interpolants[J]. J Comput Appl Math, 2004,163: 241-252.
  • 5Zhao Q J, Tan J Q. Block based Lagrange-Thiele-like blending rational interpolation [J ]. Journal of Information&Computational Science, 2006, 3 (1): 167-177.
  • 6Zhao Q J, Tan J Q, Block-based Thiele-like blending rational interpolation[J]. J Comput Appl Math, 2006, 195:312-325.
  • 7Salzer H E. Note on osculatory rational interpolation[J]. Math Comp, 1962, (16) : 486-491.
  • 8Tang S, Sheng M. A scheme for bivariate blending osculatory rational interpolation [J]. Journal of Information Computational Science, 2005,2 (4) : 789-798.
  • 9李辰盛,唐烁.基于块的Lagrange-Salzer混合切触有理插值[J].合肥工业大学学报(自然科学版),2008,31(7):1134-1137. 被引量:2
  • 10苏本跃,盛敏,唐烁,朱功勤,胡万宝.SN型多元混合切触有理插值(英文)[J].中国科学技术大学学报,2009,39(6):588-593. 被引量:3

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部