期刊文献+

环F_p+uF_p+…+u^kF_p上的线性码和常循环码的Gray像 被引量:4

Gray images of linear codes and constacyclic codes over F_p+uF_p+…+u^kF_p
下载PDF
导出
摘要 定义了环(Fp+uFp+…+ukFp)n到Fppkn的一个Gray映射;给出Gray映射的几个性质,证明环Fp+uFp+…+ukFp上的长为n的线性码的Gray像仍是线性码;及该环上长为n的(1-uk)-循环码的Gray像是域Fp上的长为pkn、指数为pk-1的准循环码。 In this paper, the Gray map from (Fp+uFp+…+u^kFp)^n to Fp^p^kn ositions of the map are given. It is shown that a code of the length n over Fp+uFp+…+u^kFp is linear if and only if its Gray image is linear, and a code of the length n is cyclic if and only if its Gray image is a quasi-cyclic code over Fp of the index p^k-1 and the length p^k n.
作者 朱士信 吴波
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第8期1049-1052,共4页 Journal of Hefei University of Technology:Natural Science
关键词 GRAY映射 线性码 常循环码 准循环码 Gray map linear code constacyclic code quasi-cyclic code
  • 相关文献

参考文献11

  • 1Hammons A R, Kumar P V, Calderbank A R. et al. The Z4-linearily of kerdock, preparata, goethals, and related codes[J]. IEEE Trans Inform Theory. 1994. 40:301-319.
  • 2Carlet C. Z2^k-linear codes[J]. IEEE Trans Inform Theory,1998,44:2522-2524.
  • 3Ling S, Blackford J T. Zp^k-1-linear codes[J]. IEEE Trans Inform Theory, 2002,48:2592-2605.
  • 4朱士信,钱建发.环Z_p^(k+1)上的Gray映射的两个性质[J].合肥工业大学学报(自然科学版),2004,27(8):878-881. 被引量:3
  • 5朱士信,童宏玺,钱建发.Z_p^(k+1)环上的循环码的Gray像[J].大学数学,2004,20(6):73-75. 被引量:3
  • 6Bonnecaze A, Udaya P. Cyclic codes and self-dual codes over F2 + uF2 [J]. IEEE Trans Inform Theory, 1999.45:1250-1255.
  • 7Qian Jian-fa,Zhang Li-na, Zhu Shi-xin. Cyclic codes over Fp + uFp+…+uk-1Fp[J]. IEICE Trans Fundamentals,2005, E88-A:795-797.
  • 8Dougherty S T, Gaborit P, Harada M. Type Ⅱ codes over F2 + uF2[J]. IEEE Trans Inform Theory, 1997, 43:32-45.
  • 9Gaborit P. Mass formulas for self-dual codes over Z4 and Fq + uFq rings[J]. IEEE Trans Inform Theory, 1996, 42:1594-1600.
  • 10Wan Zhe-xian. Quaternary codes[M]. Singapore: World Scientific, 1997.93-112.

二级参考文献15

  • 1[1]Hammons A R,Kumar Jr P V,Calderbank A R,et al. The Z4-linearity of Kerdock, Preparata, Goethals and related code [J]. IEEE Trans Inform Th, 1994,40 (1): 301 - 319.
  • 2[2]Langevin P. Duadic Z4-codes[J]. Finite Fields and Their Applications, 2000,6(2):309-326.
  • 3[3]Aydin N. Quasi-cyclic codes over Z4and some new binary codes[J]. IEEE Trans Inform Th,2002,48(7)..2 065-2 069.
  • 4[4]Helleseth T,Zinoviev V A. On Z4-linear Goethals codes and Kloosterman sums[J]. Design, Codes Crytogr,1999,17(3) :269-288.
  • 5[5]Helleseth T,Zinoviev V A. On coset weight distributions of the Z4-linear Goethals codes[J]. IEEE Trans InformTh,2001,47(5):1 758-1 772.
  • 6[6]Carlet C. Z2k-1inear codes[J]. IEEE Trans Inform Th,1998, 44(4) :1 543-1 547.
  • 7[7]San L,Blacford J T. Zpk+1-linear codes[J]. IEEE Trans Inform Th,2002,48(9):2 592-2 605.
  • 8[8]Wolfmann J. Negacyclic and cyclic codes over Z4[J]. IEEE Trans Inform Th,1999,45(9) :2 527-2 532.
  • 9[9]Wolfmann J. Binary images of cyclic codes over Z4[J]. IEEE Trans Inform Th,2001,47(5):1 773-1 779.
  • 10WanZhexian.QuaternaryCodes[]..1997

共引文献4

同被引文献29

  • 1陈磊,陈卫红.Z_p^(k+1)环上的Quasi-Cyclic码[J].信息工程大学学报,2006,7(1):23-24. 被引量:1
  • 2Qian Jianfa, Zhang Lina, Zhu Shixin. Cyclic codes over Fp+uF^p+…+ u^kFp[J]. IEICE Trans Fundamentals, 2005, E88- A: 795-797.
  • 3Bonnecaze A, Udaya P. Cyclic codes and self-dual codes over F2+ uF2 [J]. IEEE Trans Inform Theory, 1999, 45: 1250-1255.
  • 4Udaya P,Siddiqi M U. Optimal large linear complexity frequency hopping pattern derived from polynomials residue class rings[J]. IEEE Trans Inform Theory, 1998, 44:1492-1503.
  • 5Ling S, Blackford J T. Zp^k-1 -linear codes[J]. IEEE Trans Inform Theory, 2002,48 : 2592- 2605.
  • 6Wolfmann J. Nagacyclic and cyclic codes over Z4[J]. IEEE Tran Inform Theory, 1999,45 : 2527 -2532.
  • 7Tapia-Reeillas H, Vega G. A generalization of negacyclic codes[C]//Augot D, Cralet C. , Workshop on Coding and Cryptography,2001:519-529.
  • 8Wolfmann J. Binary images of cyclic codes over Z4 [J]. IEEE Tran Inform Theory, 2001, 47 : 1773-1779.
  • 9Hammons A R, Kumar P V, Calderbank A R, et al. The Z4-1inearity of Kerdock, Preparata, Goethals, and related codes[J]. IEEE Trans Inform Theory, 1994, 40 (2): 301-319.
  • 10Bonnecaze A, Udaya P. Cyclic codes and self-dual codes o- verFz-1-uFz [J]. IEEE Trans Inform Theory, 1999, 45: 1250-1255.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部