摘要
本文讨论了一类半线性抛物型积分微分方程的间断时空有限元方法.利用有限元和有限差分方法相结合的技巧,在时间离散区间内,利用Radau点处Lagrange插值多项式的特性,去掉间断时空有限元的传统证明过程中对时空网格的限制条件,并给出了时间最大模、空间L_2模,即L_∞(L_2)模的误差估计.
Adaptive space-time finite element method, continuous in space but discontinuous in time for a semilinear parabolic integro-differential equation is discussed. The approach is based on combination of finite element and finite difference techniques. In the discrete intervals of time, using properties of Lagrange interpolating polynomials at Radau points, eliminate the restriction to space-time meshes of conventional space-time discontinuous Galerkin methods. Error estimate in L∞(L2) norm, that is Maximum-norm in time, L2-norm in space are obtained.
出处
《计算数学》
CSCD
北大核心
2006年第3期293-308,共16页
Mathematica Numerica Sinica
基金
国家自然科学基金
数学天元基金(A0324652)
内蒙古自然科学基金
内蒙古大学博士科研启动项目和513项目资助.
关键词
半线性积分微分方程
时空有限元方法
误差估计
semilinear integro-differential equation, space-time finite elementmethod, error estimate