期刊文献+

半线性抛物型积分微分方程的间断时空有限元方法 被引量:14

THE SPACE-TIME DISCONTINUOUS FINITE ELEMENT METHOD FOR A SEMI-LINEAR PARABOLIC INTEGRO-DIFFERENTIAL EQUATION
原文传递
导出
摘要 本文讨论了一类半线性抛物型积分微分方程的间断时空有限元方法.利用有限元和有限差分方法相结合的技巧,在时间离散区间内,利用Radau点处Lagrange插值多项式的特性,去掉间断时空有限元的传统证明过程中对时空网格的限制条件,并给出了时间最大模、空间L_2模,即L_∞(L_2)模的误差估计. Adaptive space-time finite element method, continuous in space but discontinuous in time for a semilinear parabolic integro-differential equation is discussed. The approach is based on combination of finite element and finite difference techniques. In the discrete intervals of time, using properties of Lagrange interpolating polynomials at Radau points, eliminate the restriction to space-time meshes of conventional space-time discontinuous Galerkin methods. Error estimate in L∞(L2) norm, that is Maximum-norm in time, L2-norm in space are obtained.
作者 李宏 王焕清
出处 《计算数学》 CSCD 北大核心 2006年第3期293-308,共16页 Mathematica Numerica Sinica
基金 国家自然科学基金 数学天元基金(A0324652) 内蒙古自然科学基金 内蒙古大学博士科研启动项目和513项目资助.
关键词 半线性积分微分方程 时空有限元方法 误差估计 semilinear integro-differential equation, space-time finite elementmethod, error estimate
  • 相关文献

参考文献8

  • 1K. Eriksson, C. Johnson, Adaptive finite element methods for parabolic problems I: A linear model problem, SIAM. J. Numer. Anal., 28:1 (1991), 43-77.
  • 2C. Kabakashian, C. Makridakis, A space-time finite element method for the nonlinear Schrodinger equation: the discontinuous Galerkin method,Math. Comp., 97:222 (1998),479-499.
  • 3K. Eriksson, C. Johnson, Adaptive finite element methods for parabolic problems Ⅱ:Optimalerror estimates in L∞L2and L∞L∞, SIAM. J. Numer. Anal., 32:3(1995), 706-740.
  • 4P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amster-dam, 1978.
  • 5K. Eriksson, C. Johnson, Adaptive finite element methods for parabolic problems Ⅳ: A nonlinear problem, SIAM. J. Numer. Anal., 32:3 (1995), 1729-1749.
  • 6S.C. Brenner, L.R. Scoot, The Mathetical Theory of Finite Element Method, Springer-Verlag, New York, 1994.
  • 7C. Makridakis, I. Babuska, On the stability of the discontinuous Galerkin method for the heat equation, SIAM. J. Numer. Anal., 34:1 (1997), 389-401.
  • 8李宏,刘儒勋.抛物方程的时空有限元方法[J].应用数学和力学,2001,22(6):613-624. 被引量:17

二级参考文献7

  • 1[1]Eriksson K, Johson C. Adaptive finite element m ethods for parabolic problems Ⅰ: A linear model problem[J]. SIAM J Numer An al,1991,28(1):43—77.
  • 2[2]Eriksson K, Johson C. Adaptive finite element methods for paraboli c problems Ⅱ: Optimal error estimates in L∞L2 and L∞L∞[J] . SIAM J Numer Anal,1995,32(3):706—740.
  • 3[3]Eriksson K, Johson C. Adaptive finite element methods for paraboli c problems Ⅳ: A nonlinear problem[J]. SIAM J Numer Anal,1995,32 (3):1729—1749.
  • 4[4]Makridakis CH G, Babuska I. On the stability of the discontinuous Galerkin method for the heat equation[J]. SIAM J Numer Anal,1997,3 4(1):389—401.
  • 5[5]Kabakashian C, Makridakis C. A space-time finite element method fo r the nonlinear Schrodinger equation: the discontinuous Galerkin method[J]. Math Comput,1998,97(222):479—499.
  • 6[6]Brenner S C, Scoot L R. The Mathematical Theory of Finite Elemen t Method[M]. New York: Springer-Verlag,1994.
  • 7[7]Ciarlet P G. The Finite Element Method for Elliptic Problems[ M]. Amsterdam: North-Holland,1978.

共引文献16

同被引文献90

引证文献14

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部