期刊文献+

基于面积约束的统计直方图曲线拟合(英文) 被引量:1

STATISTIC HISTOGRAMCURVES FITTING BASED ON AREA CONSTRAINT
下载PDF
导出
摘要 我们提出用分段三次Hermite插值曲线拟合统计直方图的新方法.先根据统计直方图的特点选取Hermite插值曲线在插值点处的导数值和可调整的插值点,然后根据面积约束确定调整值,从而得到拟合曲线.所得拟合曲线与统计直方图有面积相等的约束,并且拟合曲线是C1连续的光滑曲线.所给方法简单、实用. We present a new method for constructing piecewise- cubic Hennite interpolation curves to fitting curves. We get the fitting curves by choosing adjustable functional values and derivative values at the interpolation points of the Hermite interpolation curves based on the characteristic of a statistic histogram at first and then determining a adjustable value based on the area constraint. Given fitting curves are constained by area equal with the statistic histogram and are C^1 continuous. The given method is simple and useful.
出处 《经济数学》 2006年第2期201-204,共4页 Journal of Quantitative Economics
关键词 Hennite插值 直方图 面积约束 Hermite interpolation, Histogram, area constraint
  • 相关文献

参考文献7

  • 1Fritsch, F. N., and R. E. Carlson, Monotone piecewisecubic interpolation, SlAM J. Numer. Anal., 17: 2 (April 1980),238 - 246.
  • 2Fritsch, F. N., and J. Butland, A method for constructing local monotone piecewise cubic interpolants, SIAMJ. Sci. Stat. Comput. ,5:2(June 1984) ,300 - 304
  • 3Hollig, K., Koch, J., Geometric Hennite interpolation, Computer Aided Geometric Design , 12: 6(1995), 567 - 580.
  • 4Hollig, K., Koch, J., Geometric Hennite interpolation with maximal order and smoothness, Computer Aided Geometric Design, 13: 8( 1996), 681 - 695.
  • 5Meek, D. S., Walton, D. J., Geometric Hermite interpolation with Tschirnhausen cubics, J. Comput. Appl. Math., 81 : 2 (1997), 299 - 309.
  • 6Meek, D. S., Walton, D. J., Hermite interpolation with Tschirnhausen cubic spirals, Computer Aided Geometric Design, 14: 7(1997) ,619 - 635.
  • 7Reif, U., On the local existence of the quadratic geometric Hennite interpolant, Computer Aided Geometric Design, 16: 3 (1999),217 - 221.

同被引文献5

引证文献1

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部