期刊文献+

一种压缩域中的快速运动目标提取算法

A Fast Compressed Domain Approach for Moving Object Extraction
下载PDF
导出
摘要 论文提出了一种工作于MPEG压缩域的快速运动目标提取算法。算法以通过部分解码得到的运动向量和亮度分量的直流DCT系数作为输入,提取P帧的运动目标。首先采用鲁棒性回归分析估计全局运动,标记出与全局运动不一致的宏块,得到运动块的分布;然后将运动向量场插值作为时间域的特征,将重构的直流图像转换到LUV颜色空间作为空间域的特征,采用快速平均移聚类找到时间和空间特征具有相似性的区域,得到细化的区域边界;最后结合运动块分布和聚类分析的结果,通过基于马尔可夫随机场的统计标号方法进行背景分离,得到运动目标的掩模。实验结果表明该算法可以有效地消除运动向量噪声的影响,并有很高的处理速度,对于CIF格式的视频码流,每秒可以处理约50帧。 A fast moving object extraction method working in MPEG compressed domain is proposed in this paper.The embedded motion vectors and DC coefficients of DCT transformation in an MPEG-like coded video stream are acquired by partially decoding and used as input to the algorlthm.The moving object mask for each P frame is extracted.Firstly,the global motion between current frame and the last reference frame is estimated by robust regression analysls,and blocks non-conforming to the estimated global motion are marked as potential moving blocks;Then,taking the upsampled motion vector field as the temporal space feature,and the reconstructed DC image converted to LUV color space as the spatial space feature,a fast mean-shift based clustering procedure is performed to find regions with similar temporal and spatial characteristics and get finer region boundaries;Finally,the moving object mask is obtained by an MRF - based statistical labeling procedure.The experimental results show that the proposed algorithm can effectively suppress the influence of motion vector noises,and has a very fast processing speed.For CIF video streams,the algorithm can run at a speed of 50 frames per second.
出处 《计算机工程与应用》 CSCD 北大核心 2006年第22期16-19,共4页 Computer Engineering and Applications
基金 中国科学院海外青年基金资助项目(编号:E09JJ02)
关键词 运动目标提取 压缩域 快速平均移聚类 统计标号 moving object extraction,compressed domain,fast mean-shift clustering,statistical labeling
  • 相关文献

参考文献14

  • 1Patras L,Hendriks E A,Lagendijk R L.Video segmentation by MAP labeling of watershed segments[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2001 ;23(3):326~332
  • 2Megret R,DeMenthon D.A survey of spatio-temporal grouping techniques:University of Maryland.College Park,2002
  • 3Tsaig Y,Averbuch A.Automatic segmentation of moving objects in video sequences:a region labeling approach[J].IEEE Transactions on Circuits and Systems for Video Technology,2002; 12 (7):597~612
  • 4Mezaris V,Kompatsiaris I,Strintzis M G.Video object segmentation using Bayes-based temporal tracking and trajectory-based region merging[J].IEEE Transactions on Circuits and Systems for Video Technology,2004; 14 (6):782~795
  • 5Benzougar A,Bouthemy P,Fablet R.MRF-based moving object detection from MPEG coded video[C].In:IEEE International Conference on Image Processing,2001:402~405
  • 6Babu R V,Ramakrishnan K R,Srinivasan S H.Video object segmentation:a compressed domain approach[J].IEEE Transactions on Circuits and Systems for Video Technology,2004;14(4):462~474
  • 7Mezaris V,Kompatsiaris I,Boulgouris N V et al.Real-time compresseddomain spatiotemporal segmentation and ontologies for video indexing and retrieval[J].IEEE Transactions on Circuits and Systems for Video Technology,2004; 14 (5):606~621
  • 8Porikli F,Sun H.Compressed domain video object segmentation[J].IEEE Transactions on Circuits and Systems for Video Technology,2005
  • 9Christoudias C M,Georgescu B,Meer P.Synergism in low level vision[C].In:International Conference on Pattern Recognition,2002:150~155
  • 10Comaniciu D,Meer P.Mean-shift:A Robust Approach Toward Feature Space Analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002;24(5):1~18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部