摘要
针对柔性生产环境下的车间调度问题,在考虑遗传算法早熟收敛特性和禁忌搜索法自适应优点的基础上,将遗传算法和禁忌搜索法结合起来,提出了基于遗传算法和禁忌搜索算法的双资源作业车间的调度优化问题算法,即不仅考虑到了每个工件有几条可行的工艺路线,而且考虑到了工件的调度受到机床、工人等资源制约的影响,并用实例对该算法进行了仿真研究.结果表明此算法有很好的收敛精度,是可行的,与传统的调度算法相比较,体现出其明显的优越性.
In order to avoid the premature convergence and to balance the exploration and exploitation abilities of simple GA, a hybrid algorithm is proposed to solve dynamic scheduling problem in flexible production environment. It combines the advantage of global search ability of GA with the self-adaptive merit of tabu search and improves its convergence. It is proved capable of providing optimized schedule to the job-shop where the machine tool and manpower resources are both constrained. After crossover and mutation operations, an optimal or suboptimal scheduling plan can be found. The result of the test shows that this method is feasible and efficient.
出处
《东北大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2006年第8期895-898,共4页
Journal of Northeastern University(Natural Science)
基金
国家高技术研究发展计划项目(2001AA412020)
关键词
遗传算法
禁忌搜索算法
双资源
车间调度
优化
genetic algorithm
tabu search
dual-resource
job shop scheduling
optimization