摘要
Compelling evidence shows that intracellular free magnesium [Mg^2+]i may be a critical regulator of cell activity in eukaryotes. However, membrane transport mechanisms mediating Mg^2+ influx in mammalian cells are poorly understood. Here, we show that mechanosensitive (MS) cationic channels activated by stretch are permeable for Mg^2+ ions at different extracellular concentrations including physiological ones. Single-channel currents were recorded from cell-attached and inside-out patches on K562 leukaemia cells at various concentrations of MgCl2 when Mg^2+ was the only available carrier of inward currents. At 2 mM Mg^2+, inward mechanogated currents representing Mg^2+ influx through MS channels corresponded to the unitary conductance of about 5 pS. At higher Mg^2+ levels, only slight increase of single-channel currents and conductance occurred, implying that Mg^2+ permeation through MS channels is characterized by strong saturation. At 20 and 90 mM Mg^2+, mean conductance values for inward currents carried by Mg^2+ were rather similar, being equal to 6.8 ± 0.5 and 6.4 ± 0.5 pS, respectively. The estimation of the channel-selective permeability according to constant field equation is obviously limited due to saturation effects. We conclude that the detection of single currents is the main evidence for Mg^2+ permeation through membrane channels activated by stretch. Our single-current measurements document Mg^2+ influx through MS channels in the plasma membrane of leukaemia cells.