期刊文献+

基于递归神经网络的移动域控制方法 被引量:1

Receding-horizon Control Method with Recurrent Neural Networks
下载PDF
导出
摘要 构造一种线性差分式Hop fie ld网络(LDHNN),其稳定状态可使能量函数达到唯一极小值.利用该网络稳定性与其能量函数收敛特性的关系,提出了基于LDHNN的移动域控制方法.LDHNN的理论设计表明,网络的稳态输出即为移动域LQ控制问题的解.当系统满足一定条件时,基于LDHNN的移动域LQ控制能保证闭环最优控制系统的渐近稳定性.数字仿真取得了与理论分析一致的实验结果. A linear difference Hopfield neural network (LDHNN) is built, and its energy function can reach the only minimum while LDHNN is stable. With the use of the relation between the stability and energy function convergence of the Hopfield neural network, an LDHNN-based receding-horizon (RH) control method is proposed. The theoretical design of LDHNN shows that the stable outputs of LDHNN are the solution of the RH LQ control problem. The LDHNN-based RH control can also guarantee the asymptotical stability of closed-loop optimal control systems if the controlled systems satisfy certain conditions. The numerical simulation results show the correction of theoretical analysis.
出处 《控制与决策》 EI CSCD 北大核心 2006年第8期918-922,共5页 Control and Decision
基金 国家自然科学基金项目(60375017 60304012) 教育部科学技术研究重点项目(203002) 北京市教委科研项目(KM200510005026)
关键词 递归神经网络 移动域控制 LQ控制 稳定性 Recurrent neural network Receding-horizon control LQ control Stability
  • 相关文献

参考文献9

  • 1耿晓军,席裕庚.不确定系统的滚动时域H^∞控制设计[J].控制与决策,2000,15(2):149-152. 被引量:9
  • 2Ito K, Kunisch K. Asymptotic Properties of Receding-horizon Optimal Control Problems[J]. Siam J on Cotrol and Optimization, 2002,40 (5):1585-1610.
  • 3Engwerda J C. Calculation of an Approximate Solution of the Infinite Time-varying LQ-problem [J]. IEEE Trans on Automatic Control, 1994, 39(1): 235-238.
  • 4Long T W. A Neural Network Based on Receding Horizon Optimal Controller[A]. Proc of the American Control Conf[C]. Albuquerque, 1997 : 1994-1996.
  • 5Kambhampai C, Delgado A, Mason J D. Stable Receding Horizon Control Based on Recurrent Networks[J]. IEE Proc of Control Theory Application,1997, 144(3): 249-254.
  • 6Lee J W, Kwon W H, Choi J. On Stability of Constrained Receding Horizon Control with Finite Terminal Weighting Matrix[J]. Automatica, 1998, 34(12) : 1607-1612.
  • 7Kim K B. Implementation of Stabilizing Receding Horizon Controls for Time-varying Systems [J].Automatica, 2002, 38(10), 1705-1711.
  • 8赵强福.神经网络用于二次优化存在的问题及解决方法[J].北京理工大学学报,1994,14(1):1-5. 被引量:4
  • 9邓建中 葛仁杰 程正兴.计算方法[M].西安:西安交通大学出版社,1987.201-208.

二级参考文献11

共引文献16

同被引文献11

  • 1Cun Y L, Denker J S, Solla S A. Optimal brain damage[J]. Advances in Neural Information Processing Systems, 1990, (2): 598-605.
  • 2Hassibi B, GStork D. Second order derivatives for network pruning: Optimal brain surgeon[J]. Advances in Neural Information Processing Systems, 1993, (5): 164-171.
  • 3Qiao Jun-fei, Zhang Ying, Hart Hong-gui. Fast unit pruning algorithm for feed-forward neural network design[J]. Applied Mathematics and Computation, 2008, 205(2): 662-667.
  • 4Xu Jinhua, Daniel W C Ho. A new training and pruning algorithm based on node dependence and Jacbian rank deficiency[J]. Neurocomputing, 2006, 70(1-3): 544-558.
  • 5Philippe Lauret, Eric Fock, Thierry Alex Mara. A node pruning algorithm based on a fourier amplitude sensitivity test method[J]. IEEE Trans on Neural Networks, 2006, 17(2): 273-293.
  • 6Erdogmus D, Principe J C. Generalized information potential criterion for adaptive system training[J]. IEEE Trans on Neural Networks, 2002, 13(5): 1035-1044.
  • 7Marc M Van Hulle. Joint entropy maximization in kernelbased topographic maps[J]. Neural Computation, 2002, 14(8): 1887-1906.
  • 8Spons O, Tononi G, Edelman G M. Connectivity and complexity: The relationship between neuroanatomy and brain dynamics[J]. Neural Networks, 2000, 13(9): 909- 922.
  • 9Kwok T, Yeung D. Objective functions for training new hidden units in constructive neural networks[J]. IEEE Trans on Neural Networks, 1997, 8(5): 1131-1148.
  • 10Ma L, Khorasani K. New training strategies for constructive neural networks with application to regression problems[J]. IEEE Trans on Neural Networks, 2004, 17(4): 589-609.

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部