期刊文献+

融合奇异值分解和线性鉴别分析的人脸识别算法 被引量:8

Fusion of SVD and LDA for face recognition
下载PDF
导出
摘要 本文提出了奇异值分解(SVD)和线性鉴别分析(LDA)相结合的人脸识别算法。理论上,当两种数据或分类器具有一定的独立性或互补性时,数据融合或分类器融合才能改善识别率。SVD和LDA之间有着明显的互补之处,LDA在fisher准则下能最大限度地把不同的类别区分开来,但作为一种子空间方法,LDA敏感于位移、旋转等几何变换。而作为一种代数特征提取方法的SVD则具有位移、旋转不变性等优点。因此,将这两种方法相结合就有可能提高分类性能(好于单独的SVD方法和单独的LDA方法)。在ORL数据库上的实验表明,SVD和LDA相融合的识别方法的确提高了人脸识别率。 A face recognition method based on the fusion of linear discriminant analysis (LDA) and singular value decomposition (SVD) is presented. In theory, fusion of different data or classifiers can achieve better performance when they are independent or they can overcome the shortcomings of each other. As one of the subspace methods, LDA-based method has a drawback that LDA is sensitive (variant) to translation, rotation and other geometric transforms. Contrary to LDA, SVD has a merit of invariance to translation, rotation and other geometric transforms. By combining these two methodsm it is expected that better recognition performance can be obtained. Experiment results on ORL face database demonstrate that the proposed method can indeed improve face recognition rate.
出处 《电路与系统学报》 CSCD 北大核心 2006年第4期47-50,55,共5页 Journal of Circuits and Systems
基金 安徽省自然科学基金项目资助(03042307)
关键词 人脸识别 模式识别 线性鉴别分析 奇异值分解 分类器融合 face recognition pattern recognition LDA SVD classifiers fusion
  • 相关文献

参考文献17

  • 1R Chellappa, C L Wilson, S Sirohey. Human and machine recognition of faces: a survey [A]. Proe. IEEE [C]. 1995, 83(5): 705-740.
  • 2P Belhumeur, J P Hespanha, D J Kriegman. Eigenfaces vs. fisherfaces:recognition using class specific linear projection [J]. IEEE Trans. on PAMI, 1997, 19(7): 711-720.
  • 3Diego A Socolinsky, Andrea Selinger, Joshua D Neuheisel. Face recognition with visible and thermal infrared imagery [J]. Computer Vision and Image Understanding, 2003, 91 : 72-114.
  • 4F Tsalakanidou, D Tzovaras, M G Strintzis. Use of depth and color eigenfaces for face recognition [J]. Pattern recognition letters, 2003, 24:1427-1435.
  • 5J Kittler, F Roll Eds. Proceedings of the First International Workshop on Multiple Classifier Systems [A]. Springer LNCS 1857 [C]. Itanly,2000.
  • 6F Roli, J Kittler Eds. Proceedings of the Third International Workshop on Multiple Classifier Systems [A]. Springer LNCS 2364 [C]. Italy,2002.
  • 7B Achermann, H Bunke. Combination of face classifiers for person identification [A]. Proceedings of the 13^th IAPR international conference on Pattern recognition [C]. 1996, 3: 416-420.
  • 8G L Marcialis, F Roli. Fusion of LDA and PCA for face verification [A]. Proceedings of the Workshop on Biometric Authentication [C].Springer LNCS 2359, 2002.
  • 9Lu X, Wang Y, A K Jain. Combining classifier for face recognition [A]. International Conference on Multimedia and Expo [C]. 2003, 3:16-19.
  • 10J Kittler, M Hater, R Ruin, J Matas. On combining classifiers [J]. IEEE Trans. on PAMI, 1998, 20(3): 226-239.

二级参考文献3

  • 1李淑秋,数据采集与处理,1989年,4卷,增刊,12页
  • 2Tian Q,J Opt Soc Am A,1988年,5卷,10期,1670页
  • 3孙继广,矩阵扰动分析,1987年

共引文献70

同被引文献57

引证文献8

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部