期刊文献+

三群协同粒子群优化算法 被引量:2

Three Swarms Cooperative Particle Swarm Optimization
下载PDF
导出
摘要 针对基本粒子群优化算法易陷入局部极值点、搜索精度低等缺点,提出了一种三群协同粒子群优化算法(TSC-PSO)。搜索时,如果全局极值连续若干代没有改善,粒子未找到全局最优点,就任选某个优群,将其群内粒子和差群粒子交换。仿真结果显示,对一些经典多峰值函数、非凸病态函数,TSC-PSO增强了全局搜索能力,具有比基本PSO更好的优化性能。 In order to overcome the drawback of basic PSO,such as being subject to falling into local optimization and being poor in performance of precision, an improved PSO algorithm, three swarms cooperative particle swarm optimization (TSC-PSO), is proposed. Regarding to several special multimodal functions and singular non-convex functions, the results of simulation show that the TSC-PSO can strengthen the global searching ability and have better optimization performance than basic PSO.
出处 《华东理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第7期754-757,共4页 Journal of East China University of Science and Technology
关键词 粒子群算法 协同 优化 particle swarm optimization cooperative optimization
  • 相关文献

参考文献4

  • 1Kennedy J,Eberhart R C.Particle swarm optimization[A].Proceedings of the 1995 IEEE Int Conf on Neutral Networks[C].Perth:IEEE Service centre,1995.1942-1948.
  • 2Eberhart R C,Shi Y.Comparing inertia weights and constriction factors in particle swarm optimization[A].Proceedings of the IEEE Congress on Evolutionary Computation[C].California:IEEE Service Centre,2000.84-88.
  • 3Shi Y,Eberhart R C.Particle swarm optimization:developments,applications and resources[A].Proceedings of the IEEE Congress on Evolutionary Computation[C].Seoul:IEEE Service Centre,2001.81-86.
  • 4Shi Y,Eberhart R C.Fuzzy adaptive particle swarm optimization[A].IEEE World Congress on Evolutionary Computation[C].Seoul:IEEE Service Centre,2001.101-106.

同被引文献15

  • 1周驰,高亮,高海兵.基于粒子群优化算法的约束布局优化[J].控制与决策,2005,20(1):36-40. 被引量:33
  • 2廖谟圣.2000-2005年国外深水和超深水钻井采油平台简况与思考[J].中国海洋平台,2006,21(3):1-8. 被引量:13
  • 3刘志刚,李言,李淑娟.基于蚁群算法的Job-Shop多资源约束车间作业调度[J].系统仿真学报,2007,19(1):216-220. 被引量:20
  • 4CLERC M, KENNEDY J. The particle swarm-explosion,stability,and convergence in a multidimensional complexspace[J]. Evolutionary Computation,IEEE Transactionson,2002,6(1): 58-73.
  • 5LOVBJERG M, RASMUSSEN T K, KRINK T. Hybridparticle swarm optimizer with breeding and subpopula-tions:proceedings of the Genetic and Evolutionary Com-putation Conference, 2001 [C]. USA: San Francisco,c2001: 469-476.
  • 6FRANS Van D B, ENGELBRECHT A P. Training prod-uct unit networks using cooperative particle swarm opti-mizers[J]. IEEE,2001,1:126-131.
  • 7LIU Bo, WANG Ling, JIN Yihui,et al. Improved parti-cle swarm optimization combined with chaos[J]. Cha-os,Solitons and Fractals,2005,25(5):1261-1271.
  • 8COELLO C A C, van VELDHUIZEN D A, LAMONT GB. Evolutionary algorithms for solving multi-objectiveproblems[M]. New York: Kluwer Academic,2002.
  • 9Quhong,Wang Xiaobin,Wu Lijuan.Neural network based on genetic algorithm method for license plate recognition. The Journal of New Industrialization . 2012
  • 10Araya S,Abe K,Fukumori K.An optimal rescheduling for online train traffic control in disturbed situation. Proc.22nd IEEE Conf. Decision and Control . 1983

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部