摘要
针对实际工业过程数据中的非线性问题,研究了一种基于非线性独立元分析的多变量过程监控方法。该方法根据贝叶斯原理,构造多层感知器网络恢复过程数据,并以此建立过程的数学统计模型,对其进行实时监控。在大型工业设备仿真器TE上的应用表明了该方法的有效性,同时,在故障诊断方面也体现出了一定的优越性。
Considering the nonlinear characteristic of date in real industry processes, a multivariable process monitoring method based on nonlinear independent component analysis (NICA) is presented. With the help of Bayesian theorem, process data can be reconstructed by establishing multi-layer perceptrons, and statistical model of process in mathematics can be given for monitoring in real time. The proposed method is applied to the Tennessee- Eastman (TE) process. Simulation results show its availability and advantage in the aspect of fault diagnosis.
出处
《华东理工大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2006年第7期806-809,共4页
Journal of East China University of Science and Technology
基金
新世纪优秀人才支持计划