期刊文献+

基于鲁棒最小二乘支持向量机的聚丙烯熔融指数预报 被引量:2

Melt Index Prediction of Polypropylene Based on Weighted Least Squares Support Vector Machines
下载PDF
导出
摘要 可靠地预报熔融指数在聚丙烯生产过程中至关重要。在最小二乘支持向量机采用的误差平方和惩罚函数可能会导致不稳健的预报值基础上,进一步提出了基于鲁棒最小二乘支持向量机的聚丙烯熔融指数软测量模型。工业实例研究表明该方法拟合精度高、泛化能力强,具有广阔的应用前景。 Reliable estimation of melt index (MI) is crucial for the production of polypropylene. Considering the use of a SSE cost function without regularization, as in the case with LS-SVM, might lead to less robust estimates, the weighted LS-SVM soft-sensor model of propylene polymerization process is further presented. The research results show that the proposed method provides promising prediction reliability and accuracy. This method is supposed to have extensive application prospect in propylene polymerization processes.
作者 邬正义 施健
出处 《华东理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第7期889-892,共4页 Journal of East China University of Science and Technology
关键词 聚丙烯 熔融指数 支持向量机 权重因子 polypropylene melt index support vector machines weighting factor
  • 相关文献

参考文献15

  • 1Bafna S S,Beall A M.Design of experiments study on the factors affecting variability in the melt index measurement[J].J Appl Polym Sci,1997,65:277-288.
  • 2Yi H S,Kim J H,Han C,et al.Plantwide optimal grade transition for an industrial high-density polyethylene plant[J].Ind Eng Chem Res,2003,42:91-98.
  • 3McAuley K B,MacGregor J F.On-line inference of polymer properties in an industrial polyethylene reactor[J].AIChE.J,1991,37(6):825-835.
  • 4Sarkar P,Gupta S K.Dynamic simulation of propylene polymerization in continuous flow stirred tank reactors[J].Poly Eng and Sci,1993,33(6):368-374.
  • 5McKenna T F,Soares J B P.Single particle modeling for olefin polymerization on supported catalysts:A review and proposals for future developments[J].Chem Eng Sci,2001,56:3931-3949.
  • 6Hunt K J,Sbarbaro D,Zbikowski R,et al.Neural networks for control systems-a survey[J].Automatica,1992,28(6):1083-1112.
  • 7Barto G,Sutton R S,Anderson C H.Neuron-like adaptive elements that can solve difficult learning control problem[J].IEEE Trans on Systems,Man and Cybernetics,1983,13(5):834-847.
  • 8Xiong Z H,Zhang J.Modelling and optimal control of fedbatch processes using a novel control afine feedforward neural network[J].Neurocomputing,2004,61:317-337.
  • 9Rallo R,Ferre-Giné J,Arenas A,et al.Neural virtual sensor for the inferential prediction of product quality from process variables[J].Comp and Chem Eng,2002,26:1735-1754.
  • 10Han I S,Han C,Chung C B.Melt index modeling with support vector machines,partial least squares,and artificial neural networks[J].J Appl Polym Sci,2005,95:967-974.

同被引文献10

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部